viernes, 20 de diciembre de 2024

Tiny, wireless antennas use light to monitor cellular communication

Monitoring electrical signals in biological systems helps scientists understand how cells communicate, which can aid in the diagnosis and treatment of conditions like arrhythmia and Alzheimer’s.

But devices that record electrical signals in cell cultures and other liquid environments often use wires to connect each electrode on the device to its respective amplifier. Because only so many wires can be connected to the device, this restricts the number of recording sites, limiting the information that can be collected from cells.

MIT researchers have now developed a biosensing technique that eliminates the need for wires. Instead, tiny, wireless antennas use light to detect minute electrical signals.

Small electrical changes in the surrounding liquid environment alter how the antennas scatter the light. Using an array of tiny antennas, each of which is one-hundredth the width of a human hair, the researchers could measure electrical signals exchanged between cells, with extreme spatial resolution.

The devices, which are durable enough to continuously record signals for more than 10 hours, could help biologists understand how cells communicate in response to changes in their environment. In the long run, such scientific insights could pave the way for advancements in diagnosis, spur the development of targeted treatments, and enable more precision in the evaluation of new therapies.

“Being able to record the electrical activity of cells with high throughput and high resolution remains a real problem. We need to try some innovative ideas and alternate approaches,” says Benoît Desbiolles, a former postdoc in the MIT Media Lab and lead author of a paper on the devices.

He is joined on the paper by Jad Hanna, a visiting student in the Media Lab; former visiting student Raphael Ausilio; former postdoc Marta J. I. Airaghi Leccardi; Yang Yu, a scientist at Raith America, Inc.; and senior author Deblina Sarkar, the AT&T Career Development Assistant Professor in the Media Lab and MIT Center for Neurobiological Engineering and head of the Nano-Cybernetic Biotrek Lab. The research appears today in Science Advances.

“Bioelectricity is fundamental to the functioning of cells and different life processes. However, recording such electrical signals precisely has been challenging,” says Sarkar. “The organic electro-scattering antennas (OCEANs) we developed enable recording of electrical signals wirelessly with micrometer spatial resolution from thousands of recording sites simultaneously. This can create unprecedented opportunities for understanding fundamental biology and altered signaling in diseased states as well as for screening the effect of different therapeutics to enable novel treatments.”

Biosensing with light

The researchers set out to design a biosensing device that didn’t need wires or amplifiers. Such a device would be easier to use for biologists who may not be familiar with electronic instruments.

“We wondered if we could make a device that converts the electrical signals to light and then use an optical microscope, the kind that is available in every biology lab, to probe these signals,” Desbiolles says.

Initially, they used a special polymer called PEDOT:PSS to design nanoscale transducers that incorporated tiny pieces of gold filament. Gold nanoparticles were supposed to scatter the light — a process that would be induced and modulated by the polymer. But the results weren’t matching up with their theoretical model.

The researchers tried removing the gold and, surprisingly, the results matched the model much more closely.

“It turns out we weren’t measuring signals from the gold, but from the polymer itself. This was a very surprising but exciting result. We built on that finding to develop organic electro-scattering antennas,” he says.

The organic electro-scattering antennas, or OCEANs, are composed of PEDOT:PSS. This polymer attracts or repulses positive ions from the surrounding liquid environment when there is electrical activity nearby. This modifies its chemical configuration and electronic structure, altering an optical property known as its refractive index, which changes how it scatters light.

When researchers shine light onto the antenna, the intensity of the light changes in proportion to the electrical signal present in the liquid.

Six-by-six array of tiny lights that glow brighter as voltage goes from 0 to -0.8.

With thousands or even millions of tiny antennas in an array, each only 1 micrometer wide, the researchers can capture the scattered light with an optical microscope and measure electrical signals from cells with high resolution. Because each antenna is an independent sensor, the researchers do not need to pool the contribution of multiple antennas to monitor electrical signals, which is why OCEANs can detect signals with micrometer resolution.

Intended for in vitro studies, OCEAN arrays are designed to have cells cultured directly on top of them and put under an optical microscope for analysis.

“Growing” antennas on a chip

Key to the devices is the precision with which the researchers can fabricate arrays in the MIT.nano facilities.

They start with a glass substrate and deposit layers of conductive then insulating material on top, each of which is optically transparent. Then they use a focused ion beam to cut hundreds of nanoscale holes into the top layers of the device. This special type of focused ion beam enables high-throughput nanofabrication.

“This instrument is basically like a pen where you can etch anything with a 10-nanometer resolution,” he says.

They submerge the chip in a solution that contains the precursor building blocks for the polymer. By applying an electric current to the solution, that precursor material is attracted into the tiny holes on the chip, and mushroom-shaped antennas “grow” from the bottom up.

The entire fabrication process is relatively fast, and the researchers could use this technique to make a chip with millions of antennas.

“This technique could be easily adapted so it is fully scalable. The limiting factor is how many antennas we can image at the same time,” he says.

The researchers optimized the dimensions of the antennas and adjusted parameters, which enabled them to achieve high enough sensitivity to monitor signals with voltages as low as 2.5 millivolts in simulated experiments. Signals sent by neurons for communication are usually around 100 millivolts.

“Because we took the time to really dig in and understand the theoretical model behind this process, we can maximize the sensitivity of the antennas,” he says.

OCEANs also responded to changing signals in only a few milliseconds, enabling them to record electrical signals with fast kinetics. Moving forward, the researchers want to test the devices with real cell cultures. They also want to reshape the antennas so they can penetrate cell membranes, enabling more precise signal detection.

In addition, they want to study how OCEANs could be integrated into nanophotonic devices, which manipulate light at the nanoscale for next-generation sensors and optical devices.

This research is funded, in part, by the U.S. National Institutes of Health and the Swiss National Science Foundation. Research reported in this press release was supported by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health and does not necessarily represent the official views of the NIH.



de MIT News https://ift.tt/z7tgK0C

MIT-Kalaniyot launches programs for visiting Israeli scholars

Over the past 14 months, as the impact of the ongoing Israel-Gaza war has rippled across the globe, a faculty-led initiative has emerged to support MIT students and staff by creating a community that transcends ethnicity, religion, and political views. Named for a flower that blooms along the Israel-Gaza border, MIT-Kalaniyot began hosting weekly community lunches that typically now draw about 100 participants. These gatherings have gained the interest of other universities seeking to help students not only cope with but thrive through troubled times, with some moving to replicate MIT’s model on their own campuses.

Now, scholars at Israel’s nine state-recognized universities will be able to compete for MIT-Kalaniyot fellowships designed to allow Israel’s top researchers to come to MIT for collaboration and training, advancing research while contributing to a better understanding of their country.

The MIT-Kalaniyot Postdoctoral Fellows Program will support scholars who have recently graduated from Israeli PhD programs to continue their postdoctoral training at MIT. Meanwhile, the new MIT-Kalaniyot Sabbatical Scholars Program will provide faculty and researchers holding sabbatical-eligible appointments at Israeli research institutions with fellowships for two academic terms at MIT.

Announcement of the fellowships through the association of Israeli university presidents spawned an enthusiastic response. 

“We’ve received many emails, from questions about the program to messages of gratitude. People have told us that, during a time of so much negativity, seeing such a top-tier academic program emerge feels like a breath of fresh air,” says Or Hen, the Class of 1956 Associate Professor of Physics and associate director of the Laboratory for Nuclear Science, who co-founded MIT-Kalaniyot with Ernest Fraenkel, the Grover M. Hermann Professor in Health Sciences and Technology.

Hen adds that the response from potential program donors has been positive, as well.

“People have been genuinely excited to learn about forward-thinking efforts and how they can simultaneously support both MIT and Israeli science,” he says. “We feel truly privileged to be part of this meaningful work.”

MIT-Kalaniyot is “a faculty-led initiative that emerged organically as we came to terms with some of the challenges that MIT was facing trying to keep focusing on its mission during a very difficult period for the U.S., and obviously for Israelis and Palestinians,” Fraenkel says.

As the MIT-Kalaniyot Program gained momentum, he adds, “we started talking about positive things faculty can do to help MIT fulfill its mission and then help the world, and we recognized many of the challenges could actually be helped by bringing more brilliant scholars from Israel to MIT to do great research and to humanize the face of Israelis so that people who interact with them can see them, not as some foreign entity, but as the talented person working down the hallway.”

“MIT has a long tradition of connecting scholarly communities around the world,” says MIT President Sally Kornbluth. “Programs like this demonstrate the value of bringing people and cultures together, in pursuit of new ideas and understanding.”    

Open to applicants in the humanities, architecture, management, engineering, and science, both fellowship programs aim to embrace Israel’s diverse demographics by encouraging applications from all communities and minority groups throughout Israel.

Fraenkel notes that because Israeli universities reflect the diversity of the country, he expects scholars who identify as Israeli Arabs, Palestinian citizens of Israel, and others could be among the top candidates applying and ultimately selected for MIT-Kalaniyot fellowships. 

MIT is also expanding its Global MIT At-Risk Fellows Program (GMAF), which began last year with recruitment of scholars from Ukraine, to bring Palestinian scholars to campus next fall. Fraenkel and Hen noted their close relationship with GMAF-Palestine director Kamal Youcef-Toumi, a professor in MIT’s Department of Mechanical Engineering.  

“While the programs are independent of each other, we value collaboration at MIT and are hoping to find positive ways that we can interact with each other,” Fraenkel says.

Also growing up alongside MIT-Kalaniyot’s fellowship programs will be new Kalaniyot chapters at universities such as the University of Pennsylvania and Dartmouth College, where programs have already begun, and others where activity is starting up. MIT’s inspiration for these efforts, Hen and Fraenkel say, is a key aspect of the Kalaniyot story.

“We formed a new model of faculty-led communities,” Hen says. “As faculty, our roles typically center on teaching, mentoring, and research. After October 7 happened, we saw what was happening around campus and across the nation and realized that our roles had to expand. We had to go beyond the classroom and the lab to build deeper connections within the community that transcends traditional academic structures. This faculty-led approach has become the essence of MIT-Kalaniyot, and is now inspiring similar efforts across the nation.”

Once the programs are at scale, MIT plans to bring four MIT-Kalaniyot Postdoctoral Fellows to campus annually (for three years each), as well as four MIT-Kalaniyot Sabbatical Scholars, for a total of 16 visiting Israeli scholars at any one time.

“We also hope that when they go back, they will be able to maintain their research ties with MIT, so we plan to give seed grants to encourage collaboration after someone leaves,” Fraenkel says. “I know for a lot of our postdocs, their time at MIT is really critical for making networks, regardless of where they come from or where they go. Obviously, it’s harder when you’re across the ocean in a very challenging region, and so I think for both programs it would be great to be able to maintain those intellectual ties and collaborate beyond the term of their fellowships.”

A common thread between the new Kalaniyot programs and GMAF-Palestine, Hen says, is to rise beyond differences that have been voiced post-Oct. 7 and refocus on the Institute’s core research mission.

“We're bringing in the best scholars from the region — Jews, Israelis, Arabs, Palestinians — and normalizing interactions with them and among them through collaborative research,” Hen says. “Our mission is clear: to focus on academic excellence by bringing outstanding talent to MIT and reinforcing that we are here to advance research in service of humanity.”



de MIT News https://ift.tt/VX9JR8l

Global MIT At-Risk Fellows Program expands to invite Palestinian scholars

When the Global MIT At-Risk Fellows (GMAF) initiative launched in February 2024 as a pilot program for Ukrainian researchers, its architects expressed hope that GMAF would eventually expand to include visiting scholars from other troubled areas of the globe. That time arrived this fall, when MIT launched GMAF-Palestine, a two-year pilot that will select up to five fellows each year currently either in Palestine or recently displaced to continue their work during a semester at MIT.

Designed to enhance the educational and research experiences of international faculty and researchers displaced by humanitarian crises, GMAF brings international scholars to MIT for semester-long study and research meant to benefit their regions of origin while simultaneously enriching the MIT community.

Referring to the ongoing war and humanitarian crisis in Gaza, GMAF-Palestine Director and MIT Professor Kamal Youcef-Toumi says that “investing in scientists is an important way to address this significant conflict going on in our world.” Youcef-Toumi says it’s hoped that this program “will give some space for getting to know the real people involved and a deeper understanding of the practical implications for people living through the conflict.”

Professor Duane Boning, vice provost for international activities, considers the GMAF program to be a practical way for MIT to contribute to solving the world’s most challenging problems. “Our vision is for the fellows to come to MIT for a hands-on, experiential joint learning and research experience that develops the tools necessary to support the redevelopment of their regions,” says Boning.

“Opening and sustaining connections among scholars around the world is an essential part of our work at MIT,” says MIT President Sally Kornbluth. “New collaborations so often spark new understanding and new ideas; that's precisely what we aim to foster with this kind of program.”  

Crediting Program Manager Dorothy Hanna with much of the legwork that got the fellowship off the ground, Youcef-Toumi says fellows for the program’s inaugural year will be chosen from early- and mid-career scientists via an open application and nominations from the MIT community. Following submission of applications and interviews in January, five scholars will be selected to begin their fellowships at MIT in September 2025.

Eligible applicants must have held academic or research appointments at a Palestinian university within the past five years; hold a PhD or equivalent degree in a field represented at MIT; have been born in Gaza, the West Bank, East Jerusalem, or refugee camps; have a reasonable expectation of receiving a U.S. visa, and be working in a research area represented at MIT. MIT will cover all fellowship expenses, including travel, accommodations, visas, health insurance, instructional materials, and living stipends.

To build strong relationships during their time at MIT, GMAF-Palestine will pair fellows with faculty mentors and keep them connected with other campus communities, including the Ibn Khaldun Fellowship for Saudi Arabian Women, an over 10-year-old program that Youcef-Toumi’s team also oversees. 

“MIT has a special environment and mindset that I think will be very useful. It’s a competitive environment, but also very supportive,” says Youcef-Toumi, a member of the Department of Mechanical Engineering faculty, director of the Mechatronics Research Laboratory, and co-director of the Center for Complex Engineering Systems. “In many other places, if a person is in math, they stay in math. If they are in architecture, they stay in architecture and they are not dealing with other departments or other colleges. In our case, because students’ work is often so interdisciplinary, a student in mechanical engineering can have an advisor in computer science or aerospace, and basically everything is open. There are no walls.”

Youcef-Toumi says he hopes MIT’s collegial environment among diverse departments and colleagues is a value fellows will retain and bring back to their own universities and communities.

“We are all here for scholarship. All of the people who come to MIT … they are coming for knowledge. The technical part is one thing, but there are other things here that are not available in many environments — you know, the sense of community, the values, and the excellence in academics,” Youcef-Toumi says. “These are things we will continue to emphasize, and hopefully these visiting scientists can absorb and benefit from some of that. And we will also learn from them, from their seminars and discussions with them.”

Referencing another new fellowship program launched by MIT, Kalaniyot for Israeli scholars, led by MIT professors Or Hen and Ernest Fraenkel, Youcef-Toumi says, “Getting to know the Kalaniyot team better has been great, and I’m sure we will be helping each other. To have people from that region be on campus and interacting with different people ... hopefully that will add a more positive effect and unity to the campus. This is one of the things that we hope these programs will do.”

As with any first endeavor, GMAF-Palestine’s first round of fellowships and the experiences of the fellows, and the observations of the GMAF team, will inform future iterations of the program. In addition to Youcef-Toumi, leadership for the program is provided by a faculty committee representing the breadth of scholarship at MIT. The vision of the faculty committee is to establish a sustainable program connecting the Palestinian community and MIT.

“Longer term,” Youcef-Toumi says, “we hope to show the MIT community this is a really impactful program that is worth sustaining with continued fundraising and philanthropy. We plan to stay in touch with the fellows and collect feedback from them over the first five years on how their time at MIT has impacted them as researchers and educators. Hopefully, this will include ongoing collaborations with their MIT mentors or others they meet along the way at MIT.”



de MIT News https://ift.tt/t9c1Orh

jueves, 19 de diciembre de 2024

Startup’s autonomous drones precisely track warehouse inventories

Whether you’re a fulfillment center, a manufacturer, or a distributor, speed is king. But getting products out the door quickly requires workers to know where those products are located in their warehouses at all times. That may sound obvious, but lost or misplaced inventory is a major problem in warehouses around the world.

Corvus Robotics is addressing that problem with an inventory management platform that uses autonomous drones to scan the towering rows of pallets that fill most warehouses. The company’s drones can work 24/7, whether warehouse lights are on or off, scanning barcodes alongside human workers to give them an unprecedented view of their products.

“Typically, warehouses will do inventory twice a year — we change that to once a week or faster,” says Corvus co-founder and CTO Mohammed Kabir ’21. “There’s a huge operational efficiency you gain from that.”

Corvus is already helping distributors, logistics providers, manufacturers, and grocers track their inventory. Through that work, the company has helped customers realize huge gains in the efficiency and speed of their warehouses.

The key to Corvus’s success has been building a drone platform that can operate autonomously in tough environments like warehouses, where GPS doesn’t work and Wi-Fi may be weak, by only using cameras and neural networks to navigate. With that capability, the company believes its drones are poised to enable a new level of precision for the way products are produced and stored in warehouses around the world.

A new kind of inventory management solution

Kabir has been working on drones since he was 14.

“I was interested in drones before the drone industry even existed,” Kabir says. “I’d work with people I found on the internet. At the time, it was just a bunch of hobbyists cobbling things together to see if they could work.”

In 2017, the same year Kabir came to MIT, he received a message from his eventual Corvus co-founder Jackie Wu, who was a student at Northwestern University at the time. Wu had seen some of Kabir’s work on drone navigation in GPS-denied environments as part of an open-source drone project. The students decided to see if they could use the work as the foundation for a company.

Kabir started working on spare nights and weekends as he juggled building Corvus’ technology with his coursework in MIT’s Department of Aeronautics and Astronautics. The founders initially tried using off-the-shelf drones and equipping them with sensors and computing power. Eventually they realized they had to design their drones from scratch, because off-the-shelf drones did not provide the kind of low-level control and access they needed to build full-lifecycle autonomy.

Kabir built the first drone prototype in his dorm room in Simmons Hall and took to flying each new iteration in the field out front.

“We’d build these drone prototypes and bring them out to see if they’d even fly, and then we’d go back inside and start building our autonomy systems on top of them,” Kabir recalls.

While working on Corvus, Kabir was also one of the founders of the MIT Driverless program that built North America’s first competition-winning driverless race cars.

“It’s all part of the same autonomy story,” Kabir says. “I’ve always been very interested in building robots that operate without a human touch.”

From the beginning, the founders believed inventory management was a promising application for their drone technology. Eventually they rented a facility in Boston and simulated a warehouse with huge racks and boxes to refine their technology.

By the time Kabir graduated in 2021, Corvus had completed several pilots with customers. One customer was MSI, a building materials company that distributes flooring, countertops, tile, and more. Soon MSI was using Corvus every day across multiple facilities in its nationwide network.

The Corvus One drone, which the company calls the world’s first fully autonomous warehouse inventory management drone, is equipped with 14 cameras and an AI system that allows it to safely navigate to scan barcodes and record the location of each product. In most instances, the collected data are shared with the customer’s warehouse management system (typically the warehouse’s system of record), and any discrepancies identified are automatically categorized with a suggested resolution. Additionally, the Corvus interface allows customers to select no-fly zones, choose flight behaviors, and set automated flight schedules.

“When we started, we didn’t know if lifelong vision-based autonomy in warehouses was even possible,” Kabir says. “It turns out that it’s really hard to make infrastructure-free autonomy work with traditional computer vision techniques. We were the first in the world to ship a learning-based autonomy stack for an indoor aerial robot using machine learning and neural network based approaches. We were using AI before it was cool.”

To set up, Corvus’ team simply installs one or more docks, which act as a charging and data transfer station, on the ends of product racks and completes a rough mapping step using tape measurers. The drones then fill in the fine details on their own. Kabir says it takes about a week to be fully operational in a 1-million-square-foot facility.

“We don’t have to set up any stickers, reflectors, or beacons,” Kabir says. “Our setup is really fast compared to other options in the industry. We call it infrastructure-free autonomy, and it’s a big differentiator for us.”

From forklifts to drones

A lot of inventory management today is done by a person using a forklift or a scissor lift to scan barcodes and make notes on a clipboard. The result is infrequent and inaccurate inventory checks that sometimes require warehouses to shut down operations.

“They’re going up and down on these lifts, and there are all of these manual steps involved,” Kabir says. “You have to manually collect data, then there’s a data entry step, because none of these systems are connected. What we’ve found is many warehouses are driven by bad data, and there’s no way to fix that unless you fix the data you’re collecting in the first place.”

Corvus can bring inventory management systems and processes together. Its drones also operate safely around people and forklifts every day.

“That was a core goal for us,” Kabir says. “When we go into a warehouse, it’s a privilege the customer has given us. We don’t want to disrupt their operations, and we build a system around that idea. You can fly it whenever you need to, and the system will work around your schedule.”

Kabir already believes Corvus offers the most comprehensive inventory management solution available. Moving forward, the company will offer more end-to-end solutions to manage inventory the moment it arrives at warehouses.

“Drones actually only solve a part of the inventory problem,” Kabir says. “Drones fly around to track rack pallet inventory, but a lot of stuff gets lost even before it makes it to the racks. Products arrive, they get taken off a truck, and then they are stacked on the floor, and before they are moved to the racks, items have been lost. They’re mislabelled, they’re misplaced, and they’re just gone. Our vision is to solve that.”



de MIT News https://ift.tt/QgVkpID

Making classical music and math more accessible

Senior Holden Mui appreciates the details in mathematics and music. A well-written orchestral piece and a well-designed competitive math problem both require a certain flair and a well-tuned sense of how to keep an audience’s interest.

“People want fresh, new, non-recycled approaches to math and music,” he says. Mui sees his role as a guide of sorts, someone who can take his ideas for a musical composition or a math problem and share them with audiences in an engaging way. His ideas must make the transition from his mind to the page in as precise a way as possible. Details matter.

A double major in math and music from Lisle, Illinois, Mui believes it’s important to invite people into a creative process that allows a kind of conversation to occur between a piece of music he writes and his audience, for example. Or a math problem and the people who try to solve it. “Part of math’s appeal is its ability to reveal deep truths that may be hidden in simple statements,” he argues, “while contemporary classical music should be available for enjoyment by as many people as possible.”

Mui’s first experience at MIT was as a high school student in 2017. He visited as a member of a high school math competition team attending an event hosted and staged by MIT and Harvard University students. The following year, Mui met other students at math camps and began thinking seriously about what was next.

“I chose math as a major because it’s been a passion of mine since high school. My interest grew through competitions and continued to develop it through research,” he says. “I chose MIT because it boasts one of the most rigorous and accomplished mathematics departments in the country.”

Mui is also a math problem writer for the Harvard-MIT Math Tournament (HMMT) and performs with Ribotones, a club that travels to places like retirement homes or public spaces on the Institute’s campus to play music for free. He cites French composer Maurice Ravel as one of his major musical influences.

Mui studies piano with Timothy McFarland, an artist affiliate at MIT, through the MIT Emerson/Harris Fellowship Program, and previously studied with Kate Nir and Matthew Hagle of the Music Institute of Chicago. He started piano at the age of five and cites French composer Maurice Ravel as one of his major musical influences.

As a music student at MIT, Mui is involved in piano performance, chamber music, collaborative piano, the MIT Symphony Orchestra as a violist, conducting, and composition.

He enjoys the incredible variety available within MIT’s music program. “It offers everything from electronic music to world music studies,” he notes, “and has broadened my understanding and appreciation of music’s diversity.”

Collaborating to create

Throughout his academic career, Mui found himself among like-minded students like former Yale University undergraduate Andrew Wu. Together, Mui and Wu won an Emergent Ventures grant. In this collaboration, Mui wrote the music Wu would play. Wu described his experience with one of Mui’s compositions, “Poetry,” as “demanding serious focus and continued re-readings,” yielding nuances even after repeated listens.

Another of Mui’s compositions, “Landscapes,” was performed by MIT’s Symphony Orchestra in October 2024 and offered audiences opportunities to engage with the ideas he explores in his music.

One of the challenges Mui discovered early is that academic composers sometimes create music audiences might struggle to understand. “People often say that music is a universal language, but one of the most valuable insights I’ve gained at MIT is that music isn’t as universally experienced as one might think,” he says. “There are notable differences, for example, between Western music and world music.” 

This, Mui says, broadened his perspective on how to approach music and encouraged him to consider his audience more closely when composing. He treats music as an opportunity to invite people into how he thinks. 

Creative ideas, accessible outcomes

Mui understands the value of sharing his skills and ideas with others, crediting the MIT International Science and Technology Initiatives (MISTI) program with offering multiple opportunities for travel and teaching. “I’ve been on three MISTI trips during IAP [Independent Activities Period] to teach mathematics,” he says. 

Mui says it’s important to be flexible, dynamic, and adaptable in preparation for a fulfilling professional life. Music and math both demand the development of the kinds of soft skills that can help him succeed as a musician, composer, and mathematician.

“Creating math problems is surprisingly similar to writing music,” he argues. “In both cases, the work needs to be complex enough to be interesting without becoming unapproachable.” For Mui, designing original math problems is “like trying to write down an original melody.”

“To write math problems, you have to have seen a lot of math problems before. To write music, you have to know the literature — Bach, Beethoven, Ravel, Ligeti — as diverse a group of personalities as possible.”

A future in the notes and numbers

Mui points to the professional and personal virtues of exploring different fields. “It allows me to build a more diverse network of people with unique perspectives,” he says. “Professionally, having a range of experiences and viewpoints to draw on is invaluable; the broader my knowledge and network, the more insights I can gain to succeed.”

After graduating, Mui plans to pursue doctoral study in mathematics following the completion of a cryptography internship. “The connections I’ve made at MIT, and will continue to make, are valuable because they’ll be useful regardless of the career I choose,” he says. He wants to continue researching math he finds challenging and rewarding. As with his music, he wants to strike a balance between emotion and innovation.

“I think it’s important not to pull all of one’s eggs in one basket,” he says. “One important figure that comes to mind is Isaac Newton, who split his time among three fields: physics, alchemy, and theology.” Mui’s path forward will inevitably include music and math. Whether crafting compositions or designing math problems, Mui seeks to invite others into a world where notes and numbers converge to create meaning, inspire connection, and transform understanding.



de MIT News https://ift.tt/WftdHLZ

MIT welcomes Frida Polli as its next visiting innovation scholar

Frida Polli, a neuroscientist, entrepreneur, investor, and inventor known for her leading-edge contributions at the crossroads of behavioral science and artificial intelligence, is MIT’s new visiting innovation scholar for the 2024-25 academic year. She is the first visiting innovation scholar to be housed within the MIT Schwarzman College of Computing.

Polli began her career in academic neuroscience with a focus on multimodal brain imaging related to health and disease. She was a fellow at the Psychiatric Neuroimaging Group at Mass General Brigham and Harvard Medical School. She then joined the Department of Brain and Cognitive Sciences at MIT as a postdoc, where she worked with John Gabrieli, the Grover Hermann Professor of Health Sciences and Technology and a professor of brain and cognitive sciences.

Her research has won many awards, including a Young Investigator Award from the Brain and Behavior Research Foundation. She authored over 30 peer-reviewed articles, with notable publications in the Proceedings of the National Academy of Sciences, the Journal of Neuroscience, and Brain. She transitioned from academia to entrepreneurship by completing her MBA at the Harvard Business School (HBS) as a Robert Kaplan Life Science Fellow. During this time, she also won the Life Sciences Track and the Audience Choice Award in the 2010 MIT $100K Entrepreneurship competition as a member of Aukera Therapeutics.

After HBS, Polli launched pymetrics, which harnessed advancements in cognitive science and machine learning to develop analytics-driven decision-making and performance enhancement software for the human capital sector. She holds multiple patents for the technology developed at pymetrics, which she co-founded in 2012 and led as CEO until her successful exit in 2022. Pymetrics was a World Economic Forum’s Technology Pioneer and Global Innovator, an Inc. 5000’s Fastest-Growing company, and Forbes Artificial Intelligence 50 company. Polli and pymetrics also played a pivotal role in passing the first-in-the-nation algorithmic bias law — New York’s Automated Employment Decision Tool law — which went into effect in July 2023.

Making her return to MIT as a visiting innovation scholar, Polli is collaborating closely with Sendhil Mullainathan, the Peter de Florez Professor in the departments of Electrical Engineering and Computer Science and Economics, and a principal investigator in the Laboratory for Information and Decision Systems. With Mullainathan, she is working to bring together a broad array of faculty, students, and postdocs across MIT to address concrete problems where humans and algorithms intersect, to develop a new subdomain of computer science specific to behavioral science, and to train the next generation of scientists to be bilingual in these two fields.

“Sometimes you get lucky, and sometimes you get unreasonably lucky. Frida has thrived in each of the facets we’re looking to have impact in — academia, civil society, and the marketplace. She combines a startup mentality with an abiding interest in positive social impact, while capable of ensuring the kind of intellectual rigor MIT demands. It’s an exceptionally rare combination, one we are unreasonably lucky to have,” says Mullainathan.

“People are increasingly interacting with algorithms, often with poor results, because most algorithms are not built with human interplay in mind,” says Polli. “We will focus on designing algorithms that will work synergistically with people. Only such algorithms can help us address large societal challenges in education, health care, poverty, et cetera.”

Polli was recognized as one of Inc.'s Top 100 Female Founders in 2019, followed by being named to Entrepreneur's Top 100 Powerful Women in 2020, and to the 2024 list of 100 Brilliant Women in AI Ethics. Her work has been highlighted by major outlets including The New York Times, The Wall Street Journal, The Financial Times, The Economist, Fortune, Harvard Business Review, Fast Company, Bloomberg, and Inc.

Beyond her role at pymetrics, she founded Alethia AI in 2023, an organization focused on promoting transparency in technology, and in 2024, she launched Rosalind Ventures, dedicated to investing in women founders in science and health care. She is also an advisor at the Buck Institute’s Center for Healthy Aging in Women.

"I'm delighted to welcome Dr. Polli back to MIT. As a bilingual expert in both behavioral science and AI, she is a natural fit for the college. Her entrepreneurial background makes her a terrific inaugural visiting innovation scholar,” says Dan Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Ellis Warren Professor of Electrical Engineering and Computer Science.



de MIT News https://ift.tt/CPmbrYH

Need a research hypothesis? Ask AI.

Crafting a unique and promising research hypothesis is a fundamental skill for any scientist. It can also be time consuming: New PhD candidates might spend the first year of their program trying to decide exactly what to explore in their experiments. What if artificial intelligence could help?

MIT researchers have created a way to autonomously generate and evaluate promising research hypotheses across fields, through human-AI collaboration. In a new paper, they describe how they used this framework to create evidence-driven hypotheses that align with unmet research needs in the field of biologically inspired materials.

Published Wednesday in Advanced Materials, the study was co-authored by Alireza Ghafarollahi, a postdoc in the Laboratory for Atomistic and Molecular Mechanics (LAMM), and Markus Buehler, the Jerry McAfee Professor in Engineering in MIT’s departments of Civil and Environmental Engineering and of Mechanical Engineering and director of LAMM.

The framework, which the researchers call SciAgents, consists of multiple AI agents, each with specific capabilities and access to data, that leverage “graph reasoning” methods, where AI models utilize a knowledge graph that organizes and defines relationships between diverse scientific concepts. The multi-agent approach mimics the way biological systems organize themselves as groups of elementary building blocks. Buehler notes that this “divide and conquer” principle is a prominent paradigm in biology at many levels, from materials to swarms of insects to civilizations — all examples where the total intelligence is much greater than the sum of individuals’ abilities.

“By using multiple AI agents, we’re trying to simulate the process by which communities of scientists make discoveries,” says Buehler. “At MIT, we do that by having a bunch of people with different backgrounds working together and bumping into each other at coffee shops or in MIT’s Infinite Corridor. But that's very coincidental and slow. Our quest is to simulate the process of discovery by exploring whether AI systems can be creative and make discoveries.”

Automating good ideas

As recent developments have demonstrated, large language models (LLMs) have shown an impressive ability to answer questions, summarize information, and execute simple tasks. But they are quite limited when it comes to generating new ideas from scratch. The MIT researchers wanted to design a system that enabled AI models to perform a more sophisticated, multistep process that goes beyond recalling information learned during training, to extrapolate and create new knowledge.

The foundation of their approach is an ontological knowledge graph, which organizes and makes connections between diverse scientific concepts. To make the graphs, the researchers feed a set of scientific papers into a generative AI model. In previous work, Buehler used a field of math known as category theory to help the AI model develop abstractions of scientific concepts as graphs, rooted in defining relationships between components, in a way that could be analyzed by other models through a process called graph reasoning. This focuses AI models on developing a more principled way to understand concepts; it also allows them to generalize better across domains.

“This is really important for us to create science-focused AI models, as scientific theories are typically rooted in generalizable principles rather than just knowledge recall,” Buehler says. “By focusing AI models on ‘thinking’ in such a manner, we can leapfrog beyond conventional methods and explore more creative uses of AI.”

For the most recent paper, the researchers used about 1,000 scientific studies on biological materials, but Buehler says the knowledge graphs could be generated using far more or fewer research papers from any field.

With the graph established, the researchers developed an AI system for scientific discovery, with multiple models specialized to play specific roles in the system. Most of the components were built off of OpenAI’s ChatGPT-4 series models and made use of a technique known as in-context learning, in which prompts provide contextual information about the model’s role in the system while allowing it to learn from data provided.

The individual agents in the framework interact with each other to collectively solve a complex problem that none of them would be able to do alone. The first task they are given is to generate the research hypothesis. The LLM interactions start after a subgraph has been defined from the knowledge graph, which can happen randomly or by manually entering a pair of keywords discussed in the papers.

In the framework, a language model the researchers named the “Ontologist” is tasked with defining scientific terms in the papers and examining the connections between them, fleshing out the knowledge graph. A model named “Scientist 1” then crafts a research proposal based on factors like its ability to uncover unexpected properties and novelty. The proposal includes a discussion of potential findings, the impact of the research, and a guess at the underlying mechanisms of action. A “Scientist 2” model expands on the idea, suggesting specific experimental and simulation approaches and making other improvements. Finally, a “Critic” model highlights its strengths and weaknesses and suggests further improvements.

“It’s about building a team of experts that are not all thinking the same way,” Buehler says. “They have to think differently and have different capabilities. The Critic agent is deliberately programmed to critique the others, so you don't have everybody agreeing and saying it’s a great idea. You have an agent saying, ‘There’s a weakness here, can you explain it better?’ That makes the output much different from single models.”

Other agents in the system are able to search existing literature, which provides the system with a way to not only assess feasibility but also create and assess the novelty of each idea.

Making the system stronger

To validate their approach, Buehler and Ghafarollahi built a knowledge graph based on the words “silk” and “energy intensive.” Using the framework, the “Scientist 1” model proposed integrating silk with dandelion-based pigments to create biomaterials with enhanced optical and mechanical properties. The model predicted the material would be significantly stronger than traditional silk materials and require less energy to process.

Scientist 2 then made suggestions, such as using specific molecular dynamic simulation tools to explore how the proposed materials would interact, adding that a good application for the material would be a bioinspired adhesive. The Critic model then highlighted several strengths of the proposed material and areas for improvement, such as its scalability, long-term stability, and the environmental impacts of solvent use. To address those concerns, the Critic suggested conducting pilot studies for process validation and performing rigorous analyses of material durability.

The researchers also conducted other experiments with randomly chosen keywords, which produced various original hypotheses about more efficient biomimetic microfluidic chips, enhancing the mechanical properties of collagen-based scaffolds, and the interaction between graphene and amyloid fibrils to create bioelectronic devices.

“The system was able to come up with these new, rigorous ideas based on the path from the knowledge graph,” Ghafarollahi says. “In terms of novelty and applicability, the materials seemed robust and novel. In future work, we’re going to generate thousands, or tens of thousands, of new research ideas, and then we can categorize them, try to understand better how these materials are generated and how they could be improved further.”

Going forward, the researchers hope to incorporate new tools for retrieving information and running simulations into their frameworks. They can also easily swap out the foundation models in their frameworks for more advanced models, allowing the system to adapt with the latest innovations in AI.

“Because of the way these agents interact, an improvement in one model, even if it’s slight, has a huge impact on the overall behaviors and output of the system,” Buehler says.

Since releasing a preprint with open-source details of their approach, the researchers have been contacted by hundreds of people interested in using the frameworks in diverse scientific fields and even areas like finance and cybersecurity.

“There’s a lot of stuff you can do without having to go to the lab,” Buehler says. “You want to basically go to the lab at the very end of the process. The lab is expensive and takes a long time, so you want a system that can drill very deep into the best ideas, formulating the best hypotheses and accurately predicting emergent behaviors. Our vision is to make this easy to use, so you can use an app to bring in other ideas or drag in datasets to really challenge the model to make new discoveries.”



de MIT News https://ift.tt/PwFh62v