lunes, 22 de diciembre de 2025

One pull of a string is all it takes to deploy these complex structures

MIT researchers have developed a new method for designing 3D structures that can be transformed from a flat configuration into their curved, fully formed shape with only a single pull of a string.

This technique could enable the rapid deployment of a temporary field hospital at the site of a disaster such as a devastating tsunami — a situation where quick medical action is essential to save lives.

The researchers’ approach converts a user-specified 3D structure into a flat shape composed of interconnected tiles. The algorithm uses a two-step method to find the path with minimal friction for a string that can be tightened to smoothly actuate the structure.

The actuation mechanism is easily reversible, and if the string is released, the structure quickly returns to its flat configuration. This could enable complex, 3D structures to be stored and transported more efficiently and with less cost.

In addition, the designs generated by their system are agnostic to the fabrication method, so complete structures can be produced using 3D printing, CNC milling, molding, or other techniques.

This method could enable the creation of transportable medical devices, foldable robots that can flatten to enter hard-to-reach spaces, or even modular space habitats that can be actuated by robots working on the surface of Mars.

“The simplicity of the whole actuation mechanism is a real benefit of our approach. The user just needs to provide their intended design, and then our method optimizes it in such a way that it holds the shape after just one pull on the string, so the structure can be deployed very easily. I hope people will be able to use this method to create a wide variety of different, deployable structures,” says Akib Zaman, an electrical engineering and computer science (EECS) graduate student and lead author of a paper on this new method.

He is joined on the paper by MIT graduate student Jacqueline Aslarus; postdoc Jiaji Li; Associate Professor Stefanie Mueller, leader of the Human-Computer Interaction (HCI) Engineering Group in the Computer Science and Artificial Intelligence Laboratory (CSAIL); and senior author Mina Konaković Luković, an assistant professor and leader of the Algorithmic Design Group in CSAIL. The research was presented at the Association for Computing Machinery’s SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia.

From ancient art to an algorithm

Creating deployable structures from flat pieces simplifies on-site assembly and could be especially useful in constructing emergency shelters after natural disasters. On a smaller scale, items like foldable bike helmets could improve the safety of riders who would otherwise be unable to carry a bulky helmet.

But converting flat, deployable objects into their 3D shape often requires specialized equipment or multiple steps, and the actuation mechanism is typically difficult to reverse.

“Because of these challenges, deployable structures tend to be manually designed and quite simple, geometrically. But if we can create more complex geometries, while simplifying the actuation mechanism, we could enhance the capabilities of these deployables,” Zaman says.

To do this, the researchers created a method that automatically converts a user’s 3D design into a flat structure comprised of tiles, connected by rotating hinges at the corners, which can be fully actuated by pulling a single string one time.

Hand pulls a string and a soft, curved lid-like structure is formed out of interconnected blocks.

Their method breaks a user design into a grid of quadrilateral tiles inspired by kirigami, the ancient Japanese art of paper cutting. With kirigami, by cutting a material in certain ways, they can encode it with unique properties. In this case, they use kirigami to create an auxetic mechanism, which is a structure that gets thicker when stretched and thinner when compressed.

After encoding the 3D geometry into a flat set of auxetic tiles, the algorithm computes the minimum number of points that the tightening string must lift to fully deploy the 3D structure. Then, it finds the shortest path that connects those lift points, while including all areas of the object’s boundary that must be connected to guide the structure into its 3D configuration. It does these calculations in such a way that the optimal string path minimizes friction, enabling the structure to be smoothly actuated with just one pull.

“Our method makes it easy for the user. All they have to do is input their design, and our algorithm automatically takes care of the rest. Then all the user needs to do is to fabricate the tiles exactly the way it has been computed by the algorithm,” Zaman says.

For instance, one could fabricate a structure using a multi-material 3D printer that prints the hinges of the tiles with a flexible material and the other surfaces with a hard material.

A scale independent method

One of the biggest challenges the researchers faced was figuring out how the string route and the friction within the string channel can be effectively modeled as close to physical reality.

“While playing with a few fabricated models, we observed that closing boundary tiles is a must to enable a successful deployment and the string must be routed through them. Later, we proved this observation mathematically. Then, we looked back at an age-old physics equation and used it to formulate the optimization problem for friction minimization,” he says.

They built their automatic algorithm into an interactive user interface that allows one to design and optimize configurations to generate manufacturable objects.

The researchers used their method to design several objects of different sizes, from personalized medical items including a splint and a posture corrector to an igloo-like portable structure. They also fabricated a deployable, human-scale chair they designed using their method.

A long rectangular strip of interconnected blocks becomes a tiny chair with curved features.

This method is scale independent, so it could be used to create tiny deployable objects that are injected and actuated inside the body, or architectural structures, like the frame of a building, that are deployed and actuated on-site using cranes.

In the future, the researchers want to further explore the design of tiny structures, while also tackling the engineering challenges involved in creating architectural installations, such as determining the ideal cable thickness and the necessary strength of the hinges. In addition, they want to create a self-deploying mechanism, so the structures do not need to be actuated by a human or robot.

This research is funded, in part, by an MIT Research Support Committee Award.



de MIT News https://ift.tt/qpX32kT

3 Questions: How to launch a successful climate and energy venture

In 2013, Martin Trust Center for MIT Entrepreneurship Managing Director Bill Aulet published “Disciplined Entrepreneurship: 24 Steps to a Successful Startup,” which has since sold hundreds of thousands of copies and been used to teach entrepreneurship at universities around the world. One MIT course where it’s used is 15.366 (Climate and Energy Ventures), where instructors have tweaked the framework over the years. In a new book, “Disciplined Entrepreneurship for Climate and Energy Ventures,” they codify those changes and provide a new blueprint for entrepreneurs working in the climate and energy spaces.

MIT News spoke with lead author and Trust Center Entrepreneur-in-Residence Ben Soltoff, who wrote the book with Aulet, Senior Lecturer Tod Hynes, Senior Lecturer Francis O’Sullivan, and Lecturer Libby Wayman. Soltoff explains why climate and energy entrepreneurship is so challenging and talks about some of the new steps in the book.

Q: What are climate and energy ventures?

A: It’s a broad umbrella. These ventures aren’t all in a specific industry or structured in the same way. They could be software, they could be hardware, or they could be deep tech coming out of labs. This book is also written for people working in government, large corporations, or nonprofits. Each of those folks can benefit from the entrepreneurial framework in this book. We very intentionally refer to them as climate and energy ventures in the book, not just climate and energy startups.

One common theme is meeting the challenge of providing enough energy for current and future needs without exacerbating, or even while reducing, the impact we have on our planet. Generally, climate and energy ventures are less likely to be only software. Many of the solutions we need are around molecules, not bits. A lot of it is breakthrough technology and science from research labs. You could be making a useful fuel, removing CO2 from the atmosphere, or delivering something in a novel way. Your venture might produce a chemical or molecule that’s already being provided and is a commodity. It needs to be not only more sustainable, but better for your customers — either cheaper, more reliable, or more securely delivered. Ultimately, all of these ventures have to provide value. They also often involve physical infrastructure that you have to scale up — not just 10 times or 100 times, but 1,000 times or more — from original lab demonstrations.

Q: How should climate and energy entrepreneurs be thinking about navigating financing and working with the government?

A: One of the major themes of the book is the importance of figuring out if policy is in your favor and constantly applying a policy lens to what you’re building. Finance is another major theme. In climate and energy, these things are fundamental, and we need to consider them from the beginning. We talk about different “valleys of death” — the idea that going from one stage to the next stage requires this jump in time and resources that presents a big challenge. That also relates to the jump in scale of the technology, from a lab scale to something you can produce and sell in a quantity and at a cost the market is interested in. All of that requires financing.

At an early stage, a lot of these ventures are funded through grants and research funding. Later, they start getting early-stage capital — often venture capital. Eventually, as folks are scaling, they move to debt and project financing. Companies need to be very intentional about the type of financing they’re going to pursue and at what stage. We have an entire step on creating a long-term capital plan. Entrepreneurs need to be very clear about the story they’re going to tell investors at different stages. Otherwise, they can paint themselves into a corner and fail to build a company for the next stage of capital they need.

In terms of policy, entrepreneurs should use the policy environment as a filter for selecting a market. We have a story in the book about a startup that switched from working in sub-Saharan Africa to the U.S. after the Inflation Reduction Act passed. As those incentives began disappearing, they still had the option to return to their original market. It’s not ideal for them, but they are still able to build profitable projects. You shouldn’t build a company based on the incentives alone, but you should understand which way the wind is blowing and take advantage of policy when it’s in your favor. That said, policy can always change.

Q: How should climate and energy entrepreneurs select the right market “stepping stones”?

A: Each of the “Disciplined Entrepreneurship” books talks about the importance of selecting customers and listening to your customers. When thinking about their beachhead market, or where to initially focus, climate and energy entrepreneurs need to look for the easiest near-term opportunity to plug in their technology. Subsequent market selection is also driven by technology. Instead of just picking a beachhead market and figuring everything else out later, there often needs to be an intentional choice of what we call market stepping stones. You start by focusing on an initial market in the early days — land and expand — but there needs to be a long-term strategy, so you don’t go down a dead end. These ventures don’t have a lot of flexibility as they build out potentially expensive technologies. Being intentional means having a pathway planned from the beachhead market up to the big prize that makes the entire enterprise worthwhile. The prize means having a big impact but also targeting a big market opportunity.

We have an example in the book of a company that can turn CO2 into useful products. They knew the big prize was turning it into fuel, most likely aviation fuel, but they couldn’t produce at the right volume or cost early on, so they looked at other applications. They started with making vodka from CO2 because it was low-volume and high-margin. Then the pandemic happened, so they made hand sanitizer. Then they made perfume, which had the highest margins of all. By that point, they were ready to start moving into the fuel market. The stepping stones are about figuring out who is willing to buy the simple version of your technology or product and pay a premium. Initially, looking at that company, you might say, “They’re not going to save the planet by selling vodka.” But it was a critical stepping stone to get to the big prize. Long-term thinking is essential for ventures in this space.



de MIT News https://ift.tt/GTOCwlr

Study: High-fat diets make liver cells more likely to become cancerous

One of the biggest risk factors for developing liver cancer is a high-fat diet. A new study from MIT reveals how a fatty diet rewires liver cells and makes them more prone to becoming cancerous.

The researchers found that in response to a high-fat diet, mature hepatocytes in the liver revert to an immature, stem-cell-like state. This helps them to survive the stressful conditions created by the high-fat diet, but in the long term, it makes them more likely to become cancerous.

“If cells are forced to deal with a stressor, such as a high-fat diet, over and over again, they will do things that will help them survive, but at the risk of increased susceptibility to tumorigenesis,” says Alex K. Shalek, director of the Institute for Medical Engineering and Sciences (IMES), the J. W. Kieckhefer Professor in IMES and the Department of Chemistry, and a member of the Koch Institute for Integrative Cancer Research at MIT, the Ragon Institute of MGH, MIT, and Harvard, and the Broad Institute of MIT and Harvard.

The researchers also identified several transcription factors that appear to control this reversion, which they believe could make good targets for drugs to help prevent tumor development in high-risk patients.

Shalek; Ömer Yilmaz, an MIT associate professor of biology and a member of the Koch Institute; and Wolfram Goessling, co-director of the Harvard-MIT Program in Health Sciences and Technology, are the senior authors of the study, which appears today in Cell. MIT graduate student Constantine Tzouanas, former MIT postdoc Jessica Shay, and Massachusetts General Brigham postdoc Marc Sherman are the co-first authors of the paper.

Cell reversion

A high-fat diet can lead to inflammation and buildup of fat in the liver, a condition known as steatotic liver disease. This disease, which can also be caused by a wide variety of long-term metabolic stresses such as high alcohol consumption, may lead to liver cirrhosis, liver failure, and eventually cancer.

In the new study, the researchers wanted to figure out just what happens in cells of the liver when exposed to a high-fat diet — in particular, which genes get turned on or off as the liver responds to this long-term stress.

To do that, the researchers fed mice a high-fat diet and performed single-cell RNA-sequencing of their liver cells at key timepoints as liver disease progressed. This allowed them to monitor gene expression changes that occurred as the mice advanced through liver inflammation, to tissue scarring and eventually cancer.

In the early stages of this progression, the researchers found that the high-fat diet prompted hepatocytes, the most abundant cell type in the liver, to turn on genes that help them survive the stressful environment. These include genes that make them more resistant to apoptosis and more likely to proliferate.

At the same time, those cells began to turn off some of the genes that are critical for normal hepatocyte function, including metabolic enzymes and secreted proteins.

“This really looks like a trade-off, prioritizing what’s good for the individual cell to stay alive in a stressful environment, at the expense of what the collective tissue should be doing,” Tzouanas says.

Some of these changes happened right away, while others, including a decline in metabolic enzyme production, shifted more gradually over a longer period. Nearly all of the mice on a high-fat diet ended up developing liver cancer by the end of the study.

When cells are in a more immature state, it appears that they are more likely to become cancerous if a mutation occurs later on, the researchers say.

“These cells have already turned on the same genes that they’re going to need to become cancerous. They’ve already shifted away from the mature identity that would otherwise drag down their ability to proliferate,” Tzouanas says. “Once a cell picks up the wrong mutation, then it’s really off to the races and they’ve already gotten a head start on some of those hallmarks of cancer.”

The researchers also identified several genes that appear to orchestrate the changes that revert hepatocytes to an immature state. While this study was going on, a drug targeting one of these genes (thyroid hormone receptor) was approved to treat a severe form of steatotic liver disease called MASH fibrosis. And, a drug activating an enzyme that they identified (HMGCS2) is now in clinical trials to treat steatotic liver disease.

Another possible target that the new study revealed is a transcription factor called SOX4, which is normally only active during fetal development and in a small number of adult tissues (but not the liver).

Cancer progression

After the researchers identified these changes in mice, they sought to discover if something similar might be happening in human patients with liver disease. To do that, they analyzed data from liver tissue samples removed from patients at different stages of the disease. They also looked at tissue from people who had liver disease but had not yet developed cancer.

Those studies revealed a similar pattern to what the researchers had seen in mice: The expression of genes needed for normal liver function decreased over time, while genes associated with immature states went up. Additionally, the researchers found that they could accurately predict patients’ survival outcomes based on an analysis of their gene expression patterns.

“Patients who had higher expression of these pro-cell-survival genes that are turned on with high-fat diet survived for less time after tumors developed,” Tzouanas says. “And if a patient has lower expression of genes that support the functions that the liver normally performs, they also survive for less time.”

While the mice in this study developed cancer within a year or so, the researchers estimate that in humans, the process likely extends over a longer span, possibly around 20 years. That will vary between individuals depending on their diet and other risk factors such as alcohol consumption or viral infections, which can also promote liver cells’ reversion to an immature state.

The researchers now plan to investigate whether any of the changes that occur in response to a high-fat diet can be reversed by going back to a normal diet, or by taking weight-loss drugs such as GLP-1 agonists. They also hope to study whether any of the transcription factors they identified could make good targets for drugs that could help prevent diseased liver tissue from becoming cancerous.

“We now have all these new molecular targets and a better understanding of what is underlying the biology, which could give us new angles to improve outcomes for patients,” Shalek says.

The research was funded, in part, by a Fannie and John Hertz Foundation Fellowship, a National Science Foundation Graduate Research Fellowship, the National Institutes of Health, and the MIT Stem Cell Initiative through Foundation MIT.



de MIT News https://ift.tt/THy1pah

Anything-goes “anyons” may be at the root of surprising quantum experiments

In the past year, two separate experiments in two different materials captured the same confounding scenario: the coexistence of superconductivity and magnetism. Scientists had assumed that these two quantum states are mutually exclusive; the presence of one should inherently destroy the other.

Now, theoretical physicists at MIT have an explanation for how this Jekyll-and-Hyde duality could emerge. In a paper appearing today in the Proceedings of the National Academy of Sciences, the team proposes that under certain conditions, a magnetic material’s electrons could splinter into fractions of themselves to form quasiparticles known as “anyons.” In certain fractions, the quasiparticles should flow together without friction, similar to how regular electrons can pair up to flow in conventional superconductors.

If the team’s scenario is correct, it would introduce an entirely new form of superconductivity — one that persists in the presence of magnetism and involves a supercurrent of exotic anyons rather than everyday electrons.

“Many more experiments are needed before one can declare victory,” says study lead author Senthil Todadri, the William and Emma Rogers Professor of Physics at MIT. “But this theory is very promising and shows that there can be new ways in which the phenomenon of superconductivity can arise.”

What’s more, if the idea of superconducting anyons can be confirmed and controlled in other materials, it could provide a new way to design stable qubits — atomic-scale “bits” that interact quantum mechanically to process information and carry out complex computations far more efficiently than conventional computer bits.

“These theoretical ideas, if they pan out, could make this dream one tiny step within reach,” Todadri says.

The study’s co-author is MIT physics graduate student Zhengyan Darius Shi.

“Anything goes”

Superconductivity and magnetism are macroscopic states that arise from the behavior of electrons. A material is a magnet when electrons in its atomic structure have roughly the same spin, or orbital motion, creating a collective pull in the form of a magnetic field within the material as a whole. A material is a superconductor when electrons passing through, in the form of voltage, can couple up in “Cooper pairs.” In this teamed-up state, electrons can glide through a material without friction, rather than randomly knocking against its atomic latticework.

For decades, it was thought that superconductivity and magnetism should not co-exist; superconductivity is a delicate state, and any magnetic field can easily sever the bonds between Cooper pairs. But earlier this year, two separate experiments proved otherwise. In the first experiment, MIT’s Long Ju and his colleagues discovered superconductivity and magnetism in rhombohedral graphene — a synthesized material made from four or five graphene layers.

“It was electrifying,” says Todadri, who recalls hearing Ju present the results at a conference. “It set the place alive. And it introduced more questions as to how this could be possible.”

Shortly after, a second team reported similar dual states in the semiconducting crystal molybdenium ditelluride (MoTe2). Interestingly, the conditions in which MoTe2 becomes superconductive happen to be the same conditions in which the material exhibits an exotic “fractional quantum anomalous Hall effect,” or FQAH — a phenomenon in which any electron passing through the material should split into fractions of itself. These fractional quasiparticles are known as “anyons.”

Anyons are entirely different from the two main types of particles that make up the universe: bosons and fermions. Bosons are the extroverted particle type, as they prefer to be together and travel in packs. The photon is the classic example of a boson. In contrast, fermions prefer to keep to themselves, and repel each other if they are too near. Electrons, protons, and neutrons are examples of fermions. Together, bosons and fermions are the two major kingdoms of particles that make up matter in the three-dimensional universe.

Anyons, in contrast, exist only in two-dimensional space. This third type of particle was first predicted in the 1980s, and its name was coined by MIT’s Frank Wilczek, who meant it as a tongue-in-cheek reference to the idea that, in terms of the particle’s behavior, “anything goes.”

A few years after anyons were first predicted, physicists such as Robert Laughlin PhD ’79, Wilczek, and others also theorized that, in the presence of magnetism, the quasiparticles should be able to superconduct.

“People knew that magnetism was usually needed to get anyons to superconduct, and they looked for magnetism in many superconducting materials,” Todadri says. “But superconductivity and magnetism typically do not occur together. So then they discarded the idea.”

But with the recent discovery that the two states can, in fact, peacefully coexist in certain materials, and in MoTe2 in particular, Todadri wondered: Could the old theory, and superconducting anyons, be at play?

Moving past frustration

Todadri and Shi set out to answer that question theoretically, building on their own recent work. In their new study, the team worked out the conditions under which superconducting anyons could emerge in a two-dimensional material. To do so, they applied equations of quantum field theory, which describes how interactions at the quantum scale, such as the level of individual anyons, can give rise to macroscopic quantum states, such as superconductivity. The exercise was not an intuitive one, since anyons are known to stubbornly resist moving, let alone superconducting, together.

“When you have anyons in the system, what happens is each anyon may try to move, but it’s frustrated by the presence of other anyons,” Todadri explains. “This frustration happens even if the anyons are extremely far away from each other. And that’s a purely quantum mechanical effect.”

Even so, the team looked for conditions in which anyons might break out of this frustration and move as one macroscopic fluid. Anyons are formed when electrons splinter into fractions of themselves under certain conditions in two-dimensional, single-atom-thin materials, such as MoTe2. Scientists had previously observed that MoTe2 exhibits the FQAH, in which electrons fractionalize, without the help of an external magnetic field.

Todadri and Shi took MoTe2 as a starting point for their theoretical work. They modeled the conditions in which the FQAH phenomenon emerged in MoTe2, and then looked to see how electrons would splinter, and what types of anyons would be produced, as they theoretically increased the number of electrons in the material.

They noted that, depending on the material’s electron density, two types of anyons can form: anyons with either 1/3 or 2/3 the charge of an electron. They then applied equations of quantum field theory to work out how either of the two anyon types would interact, and found that when the anyons are mostly of the 1/3 flavor, they are predictably frustrated, and their movement leads to ordinary metallic conduction. But when anyons are mostly of the 2/3 flavor, this particular fraction encourages the normally stodgy anyons to instead move collectively to form a superconductor, similar to how electrons can pair up and flow in conventional superconductors.

“These anyons break out of their frustration and can move without friction,” Todadri says. “The amazing thing is, this is an entirely different mechanism by which a superconductor can form, but in a way that can be described as Cooper pairs in any other system.”

Their work revealed that superconducting anyons can emerge at certain electron densities. What’s more, they found that when superconducting anyons first emerge, they do so in a totally new pattern of swirling supercurrents that spontaneously appear in random locations throughout the material. This behavior is distinct from conventional superconductors and is an exotic state that experimentalists can look for as a way to confirm the team’s theory. If their theory is correct, it would introduce a new form of superconductivity, through the quantum interactions of anyons.

“If our anyon-based explanation is what is happening in MoTe2, it opens the door to the study of a new kind of quantum matter which may be called ‘anyonic quantum matter,’” Todadri says. “This will be a new chapter in quantum physics.”

This research was supported, in part, by the National Science Foundation. 



de MIT News https://ift.tt/T817qnD

viernes, 19 de diciembre de 2025

Statement on Professor Nuno Loureiro

MIT has shared the following statement following last night’s announcements by authorities in Rhode Island and Massachusetts about the individual responsible for the murders of Prof. Nuno Loureiro at his home in Brookline and two students during a mass shooting at Brown University.
 
"We are grateful to all who played a part in identifying and tracking down the suspect in the killing of Prof. Loureiro. Our community continues to mourn and remember Nuno — an incredible scientist, colleague, mentor, and friend. Our thoughts are also with the Brown University community, which suffered so much loss this week.

As the authorities work to answer remaining questions, our continuing position is to refer to the law enforcement agencies and the U.S. Attorney of Massachusetts for information.

For now, our focus is on our community, on Nuno’s family, and all those who knew him.”


Remembering Nuno

 
The MIT News obituary will continue to be updated with remembrances from our community members who worked alongside Nuno.
 
In time, the many communities Nuno belonged to will create opportunities to mourn his loss and celebrate his life.

This page may be updated as there is additional public information to share.


de MIT News https://ift.tt/7NR3Hkw

MIT goes quantum

Everyone is talking about new quantum technologies, but what exactly is quantum and why are scientists, engineers and technologists so excited by the potential for this new field? On Monday, December 8, MIT will launch the MIT Quantum Initiative (or QMIT), an Institute-wide effort to apply quantum breakthroughs to the most consequential challenges in science, technology, industry, and national security. 

The interdisciplinary endeavor, the newest of MIT President Sally Kornbluth’s strategic initiatives, will bring together MIT researchers and domain experts from a range of industries to identify and tackle practical challenges wherever quantum solutions could achieve the greatest impact. In collaboration with MIT Lincoln Laboratory, industry leaders and end users from all domains, researchers from across the traditional quantum disciplines will work to identify and advance the most significant practical applications in science, technology, industry and national security.

The QMIT launch event will feature:

More information on QMIT can be found here and the full agenda can be found here



de MIT News https://ift.tt/MLFP5QV

jueves, 18 de diciembre de 2025

“Wait, we have the tech skills to build that”

Students can take many possible routes through MIT’s curriculum, which can zigag through different departments, linking classes and disciplines in unexpected ways. With so many options, charting an academic path can be overwhelming, but a new tool called NerdXing is here to help.

The brainchild of senior Julianna Schneider and other students in the MIT Schwarzman College of Computing Undergraduate Advisory Group (UAG), NerdXing lets students search for a class and see all the other classes students have gone on to take in the past, including options that are off the beaten track.

“I hope that NerdXing will democratize course knowledge for everyone,” Schneider says. “I hope that for anyone who's a freshman and maybe hasn't picked their major yet, that they can go to NerdXing and start with a class that they would maybe never consider — and then discover that, ‘Oh wait, this is perfect for this really particular thing I want to study.’”

As a student double-majoring in artificial intelligence and decision-making and in mathematics, and doing research in the Biomimetic Robotics Laboratory in the Department of Mechanical Engineering, Schneider knows the benefits of interdisciplinary studies. It’s a part of the reason why she joined the UAG, which advises the MIT Schwarzman College of Computing’s leadership as it advances education and research at the intersections between computing, engineering, the arts, and more.

Through all of her activities, Schneider seeks to make people’s lives better through technology.

“This process of finding a problem in my community and then finding the right technology to solve that — that sort of approach and that framework is what guides all the things I do,” Schneider says. “And even in robotics, the things that I care about are guided by the sort of skills that I think we need to develop to be able to have meaningful applications.”

From Albania to MIT

Before she ever touched a robot or wrote code, Schneider was an accomplished young classical pianist in Albania. When she discovered her passion for robotics at age 13, she applied some of the skills she had learned while playing piano.

“I think on some fundamental level, when I was a pianist, I thought constantly about my motor dynamics as a human being, and how I execute really complex skills but do it over and over again at the top of my ability,” Schneider says. “When it came to robotics, I was building these robotic arms that also had to operate at the top of their ability every time and do really complex tasks. It felt kind of similar to me, like a fun crossover.”

Schneider joined her high school’s robotics team as a middle schooler, and she was so immediately enamored that she ended up taking over most of the coding and building of the team’s robot. She went on to win 14 regional and national awards across the three teams she led throughout middle and high school. It was clear to her that she’d found her calling.

NerdXing wasn’t Schneider’s first experience building new technology. At just 16, she built an app meant to connect English-speaking volunteers from her international school in Tirana, Albania, to local charities that only posted jobs in Albanian. By last year, the platform, called VoluntYOU, had 18 ambassadors across four continents. It has enabled volunteers to give out more than 2,000 burritos in Reno, Nevada; register hundreds of signatures to support women’s rights legislation in Albania; and help with administering Covid-19 vaccines to more than 1,200 individuals a day in Italy.

Schneider says her experience at an international school encouraged her to recognize problems and solutions all around her.

“When I enter a new community and I can immediately be like, ‘Oh wait, if we had this tool, that would be so cool and that would help all these people,’ I think that’s just a derivative of having grown up in a place where you hear about everyone’s super different life experiences,” she says.

Schneider describes NerdXing as a continuation of many of the skills she picked up while building VoluntYOU.

“They were both motivated by seeing a challenge where I thought, ‘Wait, we have the tech skills to build that. This is something that I can envision the solution to.’ And then I wanted to actually go and make that a reality,” Schneider says.

Robotics with a positive impact

At MIT, Schneider started working in the Biomimetic Robotics Laboratory of Professor Sangbae Kim, where she has now participated in three research projects, one of which she’s co-authoring a paper on. She’s part of a team that tests how robots, including the famous back-flipping mini cheetah, move, in order to see how they could complement humans in high-stakes scenarios.

Most of her work has revolved around crafting controllers, including one hybrid-learning and model-based controller that is well-suited to robots with limited onboard computing capacity. It would allow the robot to be used in regions with less access to technology.

“It’s not just doing technology for technology's sake, but because it will bridge out into the world and make a positive difference. I think legged robotics have some of the best potential to actually be a robotic partner to human beings in the scenarios that are most high-stakes,” Schneider says.

Schneider hopes to further robotic capabilities so she can find applications that will service communities around the world. One of her goals is to help create tools that allow a surgeon to operate on a patient a long distance away. 

To take a break from academics, Schneider has channeled her love of the arts into MIT’s vibrant social dancing scene. This year, she’s especially excited about country line dancing events where the music comes on and students have to guess the choreography.

“I think it's a really fun way to make friends and to connect with the community,” she says.



de MIT News https://ift.tt/iTapYeC