miércoles, 4 de febrero de 2026

3D-printed metamaterials that stretch and fail by design

Metamaterials — materials whose properties are primarily dictated by their internal microstructure, and not their chemical makeup — have been redefining the engineering materials space for the last decade. To date, however, most metamaterials have been lightweight options designed for stiffness and strength.

New research from the MIT Department of Mechanical Engineering introduces a computational design framework to support the creation of a new class of soft, compliant, and deformable metamaterials. These metamaterials, termed 3D woven metamaterials, consist of building blocks that are composed of intertwined fibers that self-contact and entangle to endow the material with unique properties.

“Soft materials are required for emerging engineering challenges in areas such as soft robotics, biomedical devices, or even for wearable devices and functional textiles,” explains Carlos Portela, the Robert N. Noyce Career Development Professor and associate professor of mechanical engineering.

In an open-access paper published Jan. 26 in the journal Nature Communications, researchers from Portela’s lab provide a universal design framework that generates complex 3D woven metamaterials with a wide range of properties. The work also provides open-source code that allows users to create designs to fit specifications and generate a file for printing or simulating the material using a 3D printer.

“Normal knitting or weaving have been constrained by the hardware for hundreds of years — there’s only a few patterns that you can make clothes out of, for example — but that changes if hardware is no longer a limitation,” Portela says. “With this framework, you can come up with interesting patterns that completely change the way the textile is going to behave.”

Possible applications include wearable sensors that move with human skin, fabrics for aerospace or defense needs, flexible electronic devices, and a variety of other printable textiles.

The team developed general design rules — in the form of an algorithm — that first provide a graph representation of the metamaterial. The attributes of this graph eventually dictate how each fiber is placed and connected within the metamaterial. The fundamental building blocks are woven unit cells that can be functionally graded via control of various design parameters, such as the radius and pitch of the fibers that make up the woven struts.

“Because this framework allows these metamaterials to be tailored to be softer in one place and stiffer in another, or to change shape as they stretch, they can exhibit an exceptional range of behaviors that would be hard to design using conventional soft materials,” says Molly Carton, lead author of the study. Carton, a former postdoc in Portela’s lab, is now an assistant research professor in mechanical engineering at the University of Maryland.

Further, the simulation framework also allows users to predict the deformation response of these materials, capturing complex phenomena such as self-contact within fibers and entanglement, and design to predict and resist deformation or tearing patterns.

“The most exciting part was being able to tailor failure in these materials and design arbitrary combinations,” says Portela. “Based on the simulations, we were able to fabricate these spatially varying geometries and experiment on them at the microscale.”

This work is the first to provide a tool for users to design, print, and simulate an emerging class of metamaterials that are extensible and tough. It also demonstrates that through tuning of geometric parameters, users can control and predict how these materials will deform and fail, and presents several new design building blocks that substantially expand the property space of woven metamaterials.

“Until now, these complex 3D lattices have been designed manually, painstakingly, which limits the number of designs that anyone has tested,” says Carton. “We’ve been able to describe how these woven lattices work and use that to create a design tool for arbitrary woven lattices. With that design freedom, we’re able to design the way that a lattice changes shape as it stretches, how the fibers entangle and knot with each other, as well as how it tears when stretched to the limit.”

Carton says she believes the framework will be useful across many disciplines. “In releasing this framework as a software tool, our hope is that other researchers will explore what’s possible using woven lattices and find new ways to use this design flexibility,” she says. “I’m looking forward to seeing what doors our work can open.”

The paper, “Design framework for programmable three-dimensional woven metamaterials,” is available now in the journal Nature Communications. Its other MIT-affiliated authors are James Utama Surjadi, Bastien F. G. Aymon, and Ling Xu.



de MIT News https://ift.tt/zyZtPxa

Terahertz microscope reveals the motion of superconducting electrons

You can tell a lot about a material based on the type of light you shine at it: Optical light illuminates a material’s surface, while X-rays reveal its internal structures and infrared captures a material’s radiating heat.

Now, MIT physicists have used terahertz light to reveal inherent, quantum vibrations in a superconducting material, which have not been observable until now.

Terahertz light is a form of energy that lies between microwaves and infrared radiation on the electromagnetic spectrum. It oscillates over a trillion times per second — just the right pace to match how atoms and electrons naturally vibrate inside materials. Ideally, this makes terahertz light the perfect tool to probe these motions.

But while the frequency is right, the wavelength — the distance over which the wave repeats in space — is not. Terahertz waves have wavelengths hundreds of microns long. Because the smallest spot that any kind of light can be focused into is limited by its wavelength, terahertz beams cannot be tightly confined. As a result, a focused terahertz beam is physically too large to interact effectively with microscopic samples, simply washing over these tiny structures without revealing fine detail.

In a paper appearing today in the journal Nature, the scientists report that they have developed a new terahertz microscope that compresses terahertz light down to microscopic dimensions. This pinpoint of terahertz light can resolve quantum details in materials that were previously inaccessible.

The team used the new microscope to send terahertz light into a sample of bismuth strontium calcium copper oxide, or BSCCO (pronounced “BIS-co”) — a material that superconducts at relatively high temperatures. With the terahertz scope, the team observed a frictionless “superfluid” of superconducting electrons that were collectively jiggling back and forth at terahertz frequencies within the BSCCO material.

“This new microscope now allows us to see a new mode of superconducting electrons that nobody has ever seen before,” says Nuh Gedik, the Donner Professor of Physics at MIT.

By using terahertz light to probe BSCCO and other superconductors, scientists can gain a better understanding of properties that could lead to long-coveted room-temperature superconductors. The new microscope can also help to identify materials that emit and receive terahertz radiation. Such materials could be the foundation of future wireless, terahertz-based communications, that could potentially transmit more data at faster rates compared to today’s microwave-based communications.

“There’s a huge push to take Wi-Fi or telecommunications to the next level, to terahertz frequencies,” says Alexander von Hoegen, a postdoc in MIT’s Materials Research Laboratory and lead author of the study. “If you have a terahertz microscope, you could study how terahertz light interacts with microscopically small devices that could serve as future antennas or receivers.”

In addition to Gedik and von Hoegen, the study’s MIT co-authors include Tommy Tai, Clifford Allington, Matthew Yeung, Jacob Pettine, Alexander Kossak, Byunghun Lee, and Geoffrey Beach, along with collaborators at Harvard University, the Max Planck Institute for the Structure and Dynamics of Matter, the Max Planck Institute for the Physics of Complex Systems and the Brookhaven National Lab.

Hitting a limit

Terahertz light is a promising yet largely untapped imaging tool. It occupies a unique spectral “sweet spot”: Like microwaves, radio waves, and visible light, terahertz radiation is nonionizing and therefore does not carry enough energy to cause harmful radiation effects, making it safe for use in humans and biological tissues. At the same time, much like X-rays, terahertz waves can penetrate a wide range of materials, including fabric, wood, cardboard, plastic, ceramics, and even thin brick walls.

Owing to these distinctive properties, terahertz light is being actively explored for applications in security screening, medical imaging, and wireless communications. In contrast, far less effort has been devoted to applying terahertz radiation to microscopy and the illumination of microscopic phenomena. The primary reason is a fundamental limitation shared by all forms of light: the diffraction limit, which restricts spatial resolution to roughly the wavelength of the radiation used.

With wavelengths on the order of hundreds of microns, terahertz radiation is far larger than atoms, molecules, and many other microscopic structures. As a result, its ability to directly resolve microscale features is fundamentally constrained.

“Our main motivation is this problem that, you might have a 10-micron sample, but your terahertz light has a 100-micron wavelength, so what you would mostly be measuring is air, or the vacuum around your sample,” von Hoegen explains. “You would be missing all these quantum phases that have characteristic fingerprints in the terahertz regime.”

Zooming in

The team found a way around the terahertz diffraction limit by using spintronic emitters — a recent technology that produces sharp pulses of terahertz light. Spintronic emitters are made from multiple ultrathin metallic layers. When a laser illuminates the multilayered structure, the light triggers a cascade of effects in the electrons within each layer, such that the structure ultimately emits a pulse of energy at terahertz frequencies.

By holding a sample close to the emitter, the team trapped the terahertz light before it had a chance to spread, essentially squeezing it into a space much smaller than its wavelength. In this regime, the light can bypass the diffraction limit to resolve features that were previously too small to see.

The MIT team adapted this technology to observe microscopic, quantum-scale phenomena. For their new study, the team developed a terahertz microscope using spintronic emitters interfaced with a Bragg mirror. This multilayered structure of reflective films successively filters out certain, undesired wavelengths of light while letting through others, protecting the sample from the “harmful” laser which triggers the terahertz emission.

As a demonstration, the team used the new microscope to image a small, atomically thin sample of BSCCO. They placed the sample very close to the terahertz source and imaged it at temperatures close to absolute zero — cold enough for the material to become a superconductor. To create the image, they scanned the laser beam, sending terahertz light through the sample and looking for the specific signatures left by the superconducting electrons.

“We see the terahertz field gets dramatically distorted, with little oscillations following the main pulse,” von Hoegen says. “That tells us that something in the sample is emitting terahertz light, after it got kicked by our initial terahertz pulse.”

With further analysis, the team concluded that the terahertz microscope was observing the natural, collective terahertz oscillations of superconducting electrons within the material.

“It’s this superconducting gel that we’re sort of seeing jiggle,” von Hoegen says.

This jiggling superfluid was expected, but never directly visualized until now. The team is now applying the microscope to other two-dimensional materials, where they hope to capture more terahertz phenomena.

“There are a lot of the fundamental excitations, like lattice vibrations and magnetic processes, and all these collective modes that happen at terahertz frequencies,” von Hoegen says. “We can now resonantly zoom in on these interesting physics with our terahertz microscope.”

This research was supported, in part, by the U.S. Department of Energy and by the Gordon and Betty Moore Foundation.



de MIT News https://ift.tt/qg9eASB

MIT winter club sports energized by the Olympics

With the Milano Cortina 2026 Winter Olympics officially kicking off today, several of MIT’s winter sports clubs are hosting watch parties to cheer on their favorite players, events, and teams.

Members of MIT’s Curling Club are hosting a gathering to support their favorite teams. Co-presidents Polly Harrington and Gabi Wojcik are rooting for the United States.

“I’m looking forward to watching the Olympics and cheering for Team USA. I grew up in Seattle, and during the Vancouver Olympics, we took a family trip to the games. The most affordable tickets were to the curling events, and that was my first exposure to the sport. Seeing it live was really cool. I was hooked,” says Harrington.

Wojcik says, “It’s a very analytical and strategic sport, so it’s perfect for MIT students. Physicists still don't entirely agree on why the rocks behave the way they do. Everyone in the club is welcoming and open to teaching new people to play. I’d never played before and learned from scratch. The other advantage of playing is that it is a lifelong sport.”

The two say the biggest misconception about curling, other than that it is easy, is that it is played on ice skates. It’s neither easy nor played on skates. The stone, or rock, as it is often called, weighs 43 pounds, and is always made from the same weathered granite from Scotland so that the playing field, or in this case, ice, is even.

Both agree that playing is a great way to meet other students from MIT that they might not otherwise have the chance to.

Having seen the American team at a recent tournament, Wojcik is hoping the team does well, but admits that if Scotland wins, she’ll also be happy. Harrington met members of the U.S. men's curling team, Luc Violette and Ben Richardson, when curling in Seattle in high school, and will be cheering for them.

The Curling Club team practices and competes in tournaments in the New England area from late September until mid-March and always welcomes new members, no previous experience is necessary to join.

Figure Skating Club

The MIT Figure Skating Club is also excited for the 2026 Olympics and has been watching preliminary events (nationals) leading up to the games with great anticipation. Eleanor Li, the current club president, and Amanda (Mandy) Paredes Rioboo, former president, say holding small gatherings to watch the Olympics is a great way for the team to bond further.

Li began taking skating lessons at age 14 and fell in love with the sport right away, and has been skating ever since. Paredes Rioboo started lessons at age 5 and practices in the mornings with other club members, saying, “there is no better way to start the day.”

The Figure Skating Club currently has 120 members and offers a great way to meet friends who share the same passion. Any MIT student, regardless of skill level, is welcome to join the club.

Li says, “We have members ranging from former national and international competitors to people who are completely new to the ice.” Adding that her favorite part of skating is, “the freeing feeling of wind coming at you when you’re gliding across the ice! And all the life lessons learned — time management, falling again and again, and getting up again and again, the artistry and expressiveness of this beautiful sport, and most of all the community.”

Paredes Rioboo agrees. “The sport taught me discipline, to work at something and struggle with it until I got good at it. It taught me to be patient with myself and to be unafraid of failure.”

“The Olympics always bring a lot of buzz and curiosity around skating, and we’re excited to hopefully see more people come to our Saturday free group lessons, try skating for the first time, and maybe even join the club,” says Li.

Li and Paredes Rioboo are ready to watch the games with other club members. Li says, “I’m especially excited for women’s singles skating. All of the athletes have trained so hard to get there, and I’m really looking forward to watching all the beautiful skating. Especially Kaori Sakamoto.”

“I’m excited to watch Alysa Liu and Ami Nakai,” adds Paredes Rioboo.

Students interested in joining the Figure Skating Club can find more information here.



de MIT News https://ift.tt/xj5woh8

martes, 3 de febrero de 2026

SMART launches new Wearable Imaging for Transforming Elderly Care research group

What if ultrasound imaging is no longer confined to hospitals? Patients with chronic conditions, such as hypertension and heart failure, could be monitored continuously in real-time at home or on the move, giving health care practitioners ongoing clinical insights instead of the occasional snapshots — a scan here and a check-up there. This shift from reactive, hospital-based care to preventative, community and home-based care could enable earlier detection and timely intervention, and truly personalized care.

Bringing this vision to reality, the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, has launched a new collaborative research project: Wearable Imaging for Transforming Elderly Care (WITEC). 

WITEC marks a pioneering effort in wearable technology, medical imaging, research, and materials science. It will be dedicated to foundational research and development of the world’s first wearable ultrasound imaging system capable of 48-hour intermittent cardiovascular imaging for continuous and real-time monitoring and diagnosis of chronic conditions such as hypertension and heart failure. 

This multi-million dollar, multi-year research program, supported by the National Research Foundation (NRF) Singapore under its Campus for Research Excellence and Technological Enterprise program, brings together top researchers and expertise from MIT, Nanyang Technological University (NTU Singapore), and the National University of Singapore (NUS). Tan Tock Seng Hospital (TTSH) is WITEC’s clinical collaborator and will conduct patient trials to validate long-term heart imaging for chronic cardiovascular disease management.

“Addressing society’s most pressing challenges requires innovative, interdisciplinary thinking. Building on SMART’s long legacy in Singapore as a hub for research and innovation, WITEC will harness interdisciplinary expertise — from MIT and leading institutions in Singapore — to advance transformative research that creates real-world impact and benefits Singapore, the U.S., and societies all over. This is the kind of collaborative research that not only pushes the boundaries of knowledge, but also redefines what is possible for the future of health care,” says Bruce Tidor, chief executive officer and interim director of SMART, who is also an MIT professor of biological engineering and electrical engineering and computer science.

Industry-leading precision equipment and capabilities

To support this work, WITEC’s laboratory is equipped with advanced tools, including Southeast Asia’s first sub-micrometer 3D printer and the latest Verasonics Vantage NXT 256 ultrasonic imaging system, which is the first unit of its kind in Singapore.

Unlike conventional 3D printers that operate at millimeter or micrometer scales, WITEC’s 3D printer can achieve sub‑micrometer resolution, allowing components to be fabricated at the level of single cells or tissue structures. With this capability, WITEC researchers can prototype bioadhesive materials and device interfaces with unprecedented accuracy — essential to ensuring skin‑safe adhesion and stable, long‑term imaging quality.

Complementing this is the latest Verasonics ultrasonic imaging system. Equipped with a new transducer adapter and supporting a significantly larger number of probe control channels than existing systems, it gives researchers the freedom to test highly customized imaging methods. This allows more complex beamforming, higher‑resolution image capture, and integration with AI‑based diagnostic models — opening the door to long‑duration, real‑time cardiovascular imaging not possible with standard hospital equipment.

Together, these technologies allow WITEC to accelerate the design, prototyping, and testing of its wearable ultrasound imaging system, and to demonstrate imaging quality on phantoms and healthy subjects.

Transforming chronic disease care through wearable innovation 

Chronic diseases are rising rapidly in Singapore and globally, especially among the aging population and individuals with multiple long-term conditions. This trend highlights the urgent need for effective home-based care and easy-to-use monitoring tools that go beyond basic wellness tracking.

Current consumer wearables, such as smartwatches and fitness bands, offer limited physiological data like heart rate or step count. While useful for general health, they lack the depth needed to support chronic disease management. Traditional ultrasound systems, although clinically powerful, are bulky, operator-dependent, can only be deployed episodically within the hospitals, and are limited to snapshots in time, making them unsuitable for long-term, everyday use.

WITEC aims to bridge this gap with its wearable ultrasound imaging system that uses bioadhesive technology to enable up to 48 hours of uninterrupted imaging. Combined with AI-enhanced diagnostics, the innovation is aimed at supporting early detection, home-based pre-diagnosis, and continuous monitoring of chronic diseases.

Beyond improving patient outcomes, this innovation could help ease labor shortages by freeing up ultrasound operators, nurses, and doctors to focus on more complex care, while reducing demand for hospital beds and resources. By shifting monitoring to homes and communities, WITEC’s technology will enable patient self-management and timely intervention, potentially lowering health-care costs and alleviating the increasing financial and manpower pressures of an aging population.

Driving innovation through interdisciplinary collaboration

WITEC is led by the following co-lead principal investigators: Xuanhe Zhao, professor of mechanical engineering and professor of civil and environmental engineering at MIT; Joseph Sung, senior vice president of health and life sciences at NTU Singapore and dean of the Lee Kong Chian School of Medicine (LKCMedicine); Cher Heng Tan, assistant dean of clinical research at LKCMedicine; Chwee Teck Lim, NUS Society Professor of Biomedical Engineering at NUS and director of the Institute for Health Innovation and Technology at NUS; and Xiaodong Chen, distinguished university professor at the School of Materials Science and Engineering within NTU. 

“We’re extremely proud to bring together an exceptional team of researchers from Singapore and the U.S. to pioneer core technologies that will make wearable ultrasound imaging a reality. This endeavor combines deep expertise in materials science, data science, AI diagnostics, biomedical engineering, and clinical medicine. Our phased approach will accelerate translation into a fully wearable platform that reshapes how chronic diseases are monitored, diagnosed and managed,” says Zhao, who serves as a co-lead PI of WITEC.

Research roadmap with broad impact across health care, science, industry, and economy

Bringing together leading experts across interdisciplinary fields, WITEC will advance foundational work in soft materials, transducers, microelectronics, data science and AI diagnostics, clinical medicine, and biomedical engineering. As a deep-tech R&D group, its breakthroughs will have the potential to drive innovation in health-care technology and manufacturing, diagnostics, wearable ultrasonic imaging, metamaterials, diagnostics, and AI-powered health analytics. WITEC’s work is also expected to accelerate growth in high-value jobs across research, engineering, clinical validation, and health-care services, and attract strategic investments that foster biomedical innovation and industry partnerships in Singapore, the United States, and beyond.

“Chronic diseases present significant challenges for patients, families, and health-care systems, and with aging populations such as Singapore, those challenges will only grow without new solutions. Our research into a wearable ultrasound imaging system aims to transform daily care for those living with cardiovascular and other chronic conditions — providing clinicians with richer, continuous insights to guide treatment, while giving patients greater confidence and control over their own health. WITEC’s pioneering work marks an important step toward shifting care from episodic, hospital-based interventions to more proactive, everyday management in the community,” says Sung, who serves as co‑lead PI of WITEC.

Led by Violet Hoon, senior consultant at TTSH, clinical trials are expected to commence this year to validate long-term heart monitoring in the management of chronic cardiovascular disease. Over the next three years, WITEC aims to develop a fully integrated platform capable of 48-hour intermittent imaging through innovations in bioadhesive couplants, nanostructured metamaterials, and ultrasonic transducers.

As MIT’s research enterprise in Singapore, SMART is committed to advancing breakthrough technologies that address pressing global challenges. WITEC adds to SMART’s existing research endeavors that foster a rich exchange of ideas through collaboration with leading researchers and academics from the United States, Singapore, and around the world in key areas such as antimicrobial resistance, cell therapy development, precision agriculture, AI, and 3D-sensing technologies.



de MIT News https://ift.tt/9TAmhZI

New tissue models could help researchers develop drugs for liver disease

More than 100 million people in the United States suffer from metabolic dysfunction-associated steatotic liver disease (MASLD), characterized by a buildup of fat in the liver. This condition can lead to the development of more severe liver disease that causes inflammation and fibrosis.

In hopes of discovering new treatments for these liver diseases, MIT engineers have designed a new type of tissue model that more accurately mimics the architecture of the liver, including blood vessels and immune cells.

Reporting their findings today in Nature Communications, the researchers showed that this model could accurately replicate the inflammation and metabolic dysfunction that occur in the early stages of liver disease. Such a device could help researchers identify and test new drugs to treat those conditions.

This is the latest study in a larger effort by this team to use these types of tissue models, also known as microphysiological systems, to explore human liver biology, which cannot be easily replicated in mice or other animals.

In another recent paper, the researchers used an earlier version of their liver tissue model to explore how the liver responds to resmetirom. This drug is used to treat an advanced form of liver disease called metabolic dysfunction-associated steatohepatitis (MASH), but it is only effective in about 30 percent of patients. The team found that the drug can induce an inflammatory response in liver tissue, which may help to explain why it doesn’t help all patients.

“There are already tissue models that can make good preclinical predictions of liver toxicity for certain drugs, but we really need to better model disease states, because now we want to identify drug targets, we want to validate targets. We want to look at whether a particular drug may be more useful early or later in the disease,” says Linda Griffith, the School of Engineering Professor of Teaching Innovation at MIT, a professor of biological engineering and mechanical engineering, and the senior author of both studies.

Former MIT postdoc Dominick Hellen is the lead author of the resmetirom paper, which appeared Jan. 14 in Communications Biology. Erin Tevonian PhD ’25 and PhD candidate Ellen Kan, both in the Department of Biological Engineering, are the lead authors of today’s Nature Communications paper on the new microphysiological system.

Modeling drug response

In the Communications Biology paper, Griffith’s lab worked with a microfluidic device that she originally developed in the 1990s, known as the LiverChip. This chip offers a simple scaffold for growing 3D models of liver tissue from hepatocytes, the primary cell type in the liver.

This chip is widely used by pharmaceutical companies to test whether their new drugs have adverse effects on the liver, which is an important step in drug development because most drugs are metabolized by the liver.

For the new study, Griffith and her students modified the chip so that it could be used to study MASLD.

Patients with MASLD, a buildup of fat in the liver, can eventually develop MASH, a more severe disease that occurs when scar tissue called fibrosis forms in the liver. Currently, resmetirom and the GLP-1 drug semaglutide are the only medications that are FDA-approved to treat MASH. Finding new drugs is a priority, Griffith says.

“You’re never declaring victory with liver disease with one drug or one class of drugs, because over the long term there may be patients who can’t use them, or they may not be effective for all patients,” she says.

To create a model of MASLD, the researchers exposed the tissue to high levels of insulin, along with large quantities of glucose and fatty acids. This led to a buildup of fatty tissue and the development of insulin resistance, a trait that is often seen in MASLD patients and can lead to type 2 diabetes.

Once that model was established, the researchers treated the tissue with resmetirom, a drug that works by mimicking the effects of thyroid hormone, which stimulates the breakdown of fat.

To their surprise, the researchers found that this treatment could also lead to an increase in immune signaling and markers of inflammation.

“Because resmetirom is primarily intended to reduce hepatic fibrosis in MASH, we found the result quite paradoxical,” Hellen says. “We suspect this finding may help clinicians and scientists alike understand why only a subset of patients respond positively to the thyromimetic drug. However, additional experiments are needed to further elucidate the underlying mechanism.”

A more realistic liver model

Tiny yellow bits flow through vessels

In the Nature Communications paper, the researchers reported a new type of chip that allows them to more accurately reproduce the architecture of the human liver. The key advance was developing a way to induce blood vessels to grow into the tissue. These vessels can deliver nutrients and also allow immune cells to flow through the tissue.

“Making more sophisticated models of liver that incorporate features of vascularity and immune cell trafficking that can be maintained over a long time in culture is very valuable,” Griffith says. “The real advance here was showing that we could get an intimate microvascular network through liver tissue and that we could circulate immune cells. This helped us to establish differences between how immune cells interact with the liver cells in a type two diabetes state and a healthy state.”

As the liver tissue matured, the researchers induced insulin resistance by exposing the tissue to increased levels of insulin, glucose, and fatty acids.

As this disease state developed, the researchers observed changes in how hepatocytes clear insulin and metabolize glucose, as well as narrower, leakier blood vessels that reflect microvascular complications often seen in diabetic patients. They also found that insulin resistance leads to an increase in markers of inflammation that attract monocytes into the tissue. Monocytes are the precursors of macrophages, immune cells that help with tissue repair during inflammation and are also observed in the liver of patients with early-stage liver disease.

“This really shows that we can model the immune features of a disease like MASLD, in a way that is all based on human cells,” Griffith says.

The research was funded by the National Institutes of Health, the National Science Foundation Graduate Research Fellowship program, NovoNordisk, the Massachusetts Life Sciences Center, and the Siebel Scholars Foundation.



de MIT News https://ift.tt/Af2xyPl

lunes, 2 de febrero de 2026

Young and gifted

James Baldwin was a prodigy. That is not the first thing most people associate with a writer who once declared that he “had no childhood” and whose work often elides the details of his early life in New York, in the 1920s and 1930s. Still, by the time Baldwin was 14, he was a successful church preacher, excelling in a role otherwise occupied by adults.

Throw in the fact that Baldwin was reading Dostoyevsky by the fifth grade, wrote “like an angel” according to his elementary school principal, edited his middle school periodical, and wrote for his high school magazine, and it’s clear he was a precocious wordsmith.

These matters are complicated, of course. To MIT scholar Joshua Bennett, Baldwin’s writings reveal enough for us to conclude that his childhood was marked by a “relentless introspection” as he sought to come to terms with the world. Beyond that, Bennett thinks, some of Baldwin’s work, and even the one children’s book he wrote, yields “messages of persistence,” recognizing the need for any child to receive encouragement and education.

And if someone as precocious as Baldwin still needed cultivation, then virtually everyone does. If we act is if talent blossoms on its own, we are ignoring the vital role communities, teachers, and families play in helping artists — or anyone — develop their skills.

“We talk as if these people emerged ex nihilo,” Bennett says. “When all along the way, there were people who cultivated them, and our children deserve the same — all of the children of the world. We have a dominant model of genius that is fundamentally flawed, in that it often elides the role of communities and cultural institutions.”

Bennett explores these issues in a new book, “The People Can Fly: American Promise, Black Prodigies, and the Greatest Miracle of All Time,” published this week by Hachette. A literary scholar and poet himself, Bennett is the Distinguished Chair of the Humanities at MIT and a professor of literature.

“The People Can Fly” accomplishes many kinds of work at once: Bennett offers a series of profiles, carefully wrought to see how some prominent figures were able to flourish from childhood forward. And he closely reads their works for indications about how they understood the shape of their own lives. In so doing, Bennett underscores the significance of the social settings that prodigious talents grow up in. For good measure, he also offers reflections on his own career trajectory and encounters with these artists, driving home their influence and meaning.

Reading about these many prodigies, one by one, helps readers build a picture of the realities, and complications, of trying to sustain early promise.

“It’s part of what I tell my students — the individual is how you get to the universal,” Bennett says. “It doesn’t mean I need to share certain autobiographical impulses with, say, Hemingway. It’s just that I think those touchpoints exist in all great works of art.”

Space odyssey

For Bennett, the idea of writing about prodigies grew naturally from his research and teaching, which ranges broadly in American and global literature. Bennett began contemplating “the idea of promise as this strange, idiosyncratic quality, this thing we see through various acts, perhaps something as simple as a little riff you hear a child sing, an element of their drawings, or poems.” At the same time, he notes, people struggle with “the weight of promise. There is a peril that can come along with promise. Promise can be taken away.”

Ultimately, Bennett adds, “I started thinking a little more about what promise has meant in African American communities,” in particular. Ranging widely in the book, Bennett consistently loops back to a core focus on the ideals, communities, and obstacles many Black artists grew up with. These artists and intellectuals include Malcolm X, Gwendolyn Brooks, Stevie Wonder, and the late poet and scholar Nikki Giovanni.

Bennett’s chapter on Giovanni shows his own interest in placing an artist’s life in historical context, and picks up on motifs relating back to childhood and personal promise.

Giovanni attended Fisk University early, enrolling at 17. Later she enrolled in Columbia University’s Masters of Fine Arts program, where poetry students were supposed to produce publishable work in a two-year program. In her first year, Giovanni’s poetry collection, “Black Feeling, Black Talk,” not only got published but became a hit, selling 10,000 copies. She left the program early — without a degree, since it required two years of residency. In short, she was always going places.

Giovanni went on to become one of the most celebrated poets of her time, and spent decades on the faculty at Virginia Tech. One idea that kept recurring in her work: dreams of space exploration. Giovanni’s work transmitted a clear enthusiasm for exploring the stars.

“Looking through her work, you see space travel everywhere,” Bennett says. “Even in her most prominent poem, ‘Ego trippin (there may be a reason why),’ there is this sense of someone who’s soaring over the landscape — ‘I’m so hip even my errors are correct.’ There is this idea of an almost divine being.”

That enthusiasm was accompanied by the recognition that astronauts, at least at one time, emerged from a particular slice of society. Indeed, Giovanni at many times publicly called for more opportunities for more Americans to become astronauts. A pressing issue, for her, was making dreams achievable for more people.

“Nikki Giovanni is very invested in these sorts of questions, as a writer, as an educator, and as a big thinker,” Bennett says. “This kind of thinking about the cosmos is everywhere in her work. But inside of that is a critique, that everyone should have a chance to expand the orbit of their dreaming. And dream of whatever they need to.”

And as Bennett draws out in “The People Can Fly,” stories and visions of flying have run deep in Black culture, offering a potent symbolism and a mode of “holding on to a deeper sense that the constraints of this present world are not all-powerful or everlasting. The miraculous is yet available. The people could fly, and still can.”

Children with promise, families with dreams

Other artists have praised “The People Can Fly.” The actor, producer, and screenwriter Lena Waithe has said that “Bennett’s poetic nature shines through on every page. … This book is a masterclass in literature and a necessary reminder to cherish the child in all of us.”

Certainly Bennett brings a vast sense of scope to “The People Can Fly,” ranging across centuries of history. Phillis Wheatley, a former enslaved woman whose 1773 poetry collection was later praised by George Washington, was an early American prodigy, studying the classics as a teenager and releasing her work at age 20. Mae Jemison, the first Black female astronaut, enrolled in Stanford University at age 16, spurred by family members who taught her about the stars. All told, Bennett weaves together a scholarly tapestry about hope, ambition, and, at times, opportunity.

Often, that hope and ambition belong to whole families, not just one gifted child. As Nikki Giovanni herself quipped, while giving the main address at MIT’s annual Martin Luther King convocation in 1990, “the reason you go to college is that it makes your mother happy.”

Bennett can relate, having come from a family where his mother was the only prior relative to have attended college. As a kid in the 1990s, growing up in Yonkers, New York, he had a Princeton University sweatshirt, inspired by his love of the television program “The Fresh Prince of Bel Air.” The program featured a character named Phillip Banks — popularly known as “Uncle Phil” — who was, within the world of the show, a Princeton alumnus.

“I would ask my Mom, ‘How do I get into Princeton?’” Bennett recalls. “She would just say, ‘Study hard, honey.’ No one but her had even been to college in my family. No one had been to Princeton. No one had set foot on Princeton University’s campus. But the idea that was possible in the country we lived in, for a woman who was the daughter of two sharecroppers, and herself grew up in a tenement with her brothers and sister, and nonetheless went on to play at Carnegie Hall and get a college degree and buy her mother a color TV — it’s fascinating to me.”

The postscript to that anecdote is that Bennett did go on to earn his PhD from Princeton. Behind many children with promise are families and communities with dreams for those kids.

“There’s something to it I refuse to relinquish,” Bennett says. “My mother’s vision was a powerful and persistent one — she believed that the future also belonged to her children.”



de MIT News https://ift.tt/SG9zwMK

How a unique class of neurons may set the table for brain development

The way the brain develops can shape us throughout our lives, so neuroscientists are intensely curious about how it happens. A new study by researchers in The Picower Institute for Learning and Memory at MIT that focused on visual cortex development in mice reveals that an important class of neurons follows a set of rules that, while surprising, might just create the right conditions for circuit optimization.

During early brain development, multiple types of neurons emerge in the visual cortex (where the brain processes vision). Many are “excitatory,” driving the activity of brain circuits, and others are “inhibitory,” meaning they control that activity. Just like a car needs not only an engine and a gas pedal, but also a steering wheel and brakes, a healthy balance between excitation and inhibition is required for proper brain function. During a “critical period” of development in the visual cortex, soon after the eyes first open, excitatory and inhibitory neurons forge and edit millions of connections, or synapses, to adapt nascent circuits to the incoming flood of visual experience. Over many days, in other words, the brain optimizes its attunement to the world.

In the new study in The Journal of Neuroscience, a team led by MIT research scientist Josiah Boivin and Professor Elly Nedivi visually tracked somatostatin (SST)-expressing inhibitory neurons forging synapses with excitatory cells along their sprawling dendrite branches, illustrating the action before, during, and after the critical period with unprecedented resolution. Several of the rules the SST cells appeared to follow were unexpected — for instance, unlike other cell types, their activity did not depend on visual input — but now that the scientists know these neurons’ unique trajectory, they have a new idea about how it may enable sensory activity to influence development: SST cells might help usher in the critical period by establishing the baseline level of inhibition needed to ensure that only certain types of sensory input will trigger circuit refinement.

“Why would you need part of the circuit that’s not really sensitive to experience? It could be that it’s setting things up for the experience-dependent components to do their thing,” says Nedivi, the William R. and Linda R. Young Professor in the Picower Institute and MIT’s departments of Biology and Brain and Cognitive Sciences.

Boivin adds: “We don’t yet know whether SST neurons play a causal role in the opening of the critical period, but they are certainly in the right place at the right time to sculpt cortical circuitry at a crucial developmental stage.”

A unique trajectory

To visualize SST-to-excitatory synapse development, Nedivi and Boivin’s team used a genetic technique that pairs expression of synaptic proteins with fluorescent molecules to resolve the appearance of the “boutons” SST cells use to reach out to excitatory neurons. They then performed a technique called eMAP, developed by Kwanghun Chung’s lab in the Picower Institute, that expands and clears brain tissue to increase magnification, allowing super-resolution visualization of the actual synapses those boutons ultimately formed with excitatory cells along their dendrites. Co-author and postdoc Bettina Schmerl helped lead the eMAP work.

These new techniques revealed that SST bouton appearance and then synapse formation surged dramatically when the eyes opened, and then as the critical period got underway. But while excitatory neurons during this time frame are still maturing, first in the deepest layers of the cortex and later in its more superficial layers, the SST boutons blanketed all layers simultaneously, meaning that, perhaps counterintuitively, they sought to establish their inhibitory influence regardless of the maturation stage of their intended partners.

Many studies have shown that eye opening and the onset of visual experience sets in motion the development and elaboration of excitatory cells and another major inhibitory neuron type (parvalbumin-expressing cells). Raising mice in the dark for different lengths of time, for instance, can distinctly alter what happens with these cells. Not so for the SST neurons. The new study showed that varying lengths of darkness had no effect on the trajectory of SST bouton and synapse appearance; it remained invariant, suggesting it is preordained by a genetic program or an age-related molecular signal, rather than experience.

Moreover, after the initial frenzy of synapse formation during development, many synapses are then edited, or pruned away, so that only the ones needed for appropriate sensory responses endure. Again, the SST boutons and synapses proved to be exempt from these redactions. Although the pace of new SST synapse formation slowed at the peak of the critical period, the net number of synapses never declined, and even continued increasing into adulthood.

“While a lot of people think that the only difference between inhibition and excitation is their valence, this demonstrates that inhibition works by a totally different set of rules,” Nedivi says.

In all, while other cell types were tailoring their synaptic populations to incoming experience, the SST neurons appeared to provide an early but steady inhibitory influence across all layers of the cortex. After excitatory synapses have been pruned back by the time of adulthood, the continued upward trickle of SST inhibition may contribute to the increase in the inhibition to excitation ratio that still allows the adult brain to learn, but not as dramatically or as flexibly as during early childhood.

A platform for future studies

In addition to shedding light on typical brain development, Nedivi says, the study’s techniques can enable side-by-side comparisons in mouse models of neurodevelopmental disorders such as autism or epilepsy, where aberrations of excitation and inhibition balance are implicated.

Future studies using the techniques can also look at how different cell types connect with each other in brain regions other than the visual cortex, she adds.

Boivin, who will soon open his own lab as a faculty member at Amherst College, says he is eager to apply the work in new ways.

“I’m excited to continue investigating inhibitory synapse formation on genetically defined cell types in my future lab,” Boivin says. “I plan to focus on the development of limbic brain regions that regulate behaviors relevant to adolescent mental health.”

In addition to Nedivi, Boivin and Schmerl, the paper’s other authors are Kendyll Martin and Chia-Fang Lee.

Funding for the study came from the National Institutes of Health, the Office of Naval Research, and the Freedom Together Foundation.



de MIT News https://ift.tt/YD7OUx8