viernes, 20 de febrero de 2026

Fragile X study uncovers brain wave biomarker bridging humans and mice

Numerous potential treatments for neurological conditions, including autism spectrum disorders, have worked well in mice but then disappointed in humans. What would help is a non-invasive, objective readout of treatment efficacy that is shared in both species. 

In a new open-access study in Nature Communications, a team of MIT researchers, backed by collaborators across the United States and in the United Kingdom, identifies such a biomarker in fragile X syndrome, the most common inherited form of autism.

Led by postdoc Sara Kornfeld-Sylla and Picower Professor Mark Bear, the team measured the brain waves of human boys and men, with or without fragile X syndrome, and comparably aged male mice, with or without the genetic alteration that models the disorder. The novel approach Kornfeld-Sylla used for analysis enabled her to uncover specific and robust patterns of differences in low-frequency brain waves between typical and fragile X brains shared between species at each age range. In further experiments, the researchers related the brain waves to specific inhibitory neural activity in the mice and showed that the biomarker was able to indicate the effects of even single doses of a candidate treatment for fragile X called arbaclofen, which enhances inhibition in the brain.

Both Kornfeld-Sylla and Bear praised and thanked colleagues at Boston Children’s Hospital, the Phelan-McDermid Syndrome Foundation, Cincinnati Children’s Hospital, the University of Oklahoma, and King’s College London for gathering and sharing data for the study.

“This research weaves together these different datasets and finds the connection between the brain wave activity that’s happening in fragile X humans that is different from typically developed humans, and in the fragile X mouse model that is different than the ‘wild-type’ mice,” says Kornfeld-Sylla, who earned her PhD in Bear’s lab in 2024 and continued the research as a FRAXA postdoc. “The cross-species connection and the collaboration really makes this paper exciting.”

Bear, a faculty member in The Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences at MIT, says having a way to directly compare brain waves can advance treatment studies.

“Because that is something we can measure in mice and humans minimally invasively, you can pose the question: If drug treatment X affects this signature in the mouse, at what dose does that same drug treatment change that same signature in a human?” Bear says. “Then you have a mapping of physiological effects onto measures of behavior. And the mapping can go both ways.”

Peaks and powers

In the study, the researchers measured EEG over the occipital lobe of humans and on the surface of the visual cortex of the mice. They measured power across the frequency spectrum, replicating previous reports of altered low-frequency brain waves in adult humans with fragile X and showing for the first time how these disruptions differ in children with fragile X.

To enable comparisons with mice, Kornfeld-Sylla subtracted out background activity to specifically isolate only “periodic” fluctuations in power (i.e., the brain waves) at each frequency. She also disregarded the typical way brain waves are grouped by frequency (into distinct bands with Greek letter designations delta, theta, alpha, beta, and gamma) so that she could simply juxtapose the periodic power spectra of the humans and mice without trying to match them band by band (e.g., trying to compare the mouse “alpha” band to the human one). This turned out to be crucial because the significant, similar patterns exhibited by the mice actually occurred in a different low-frequency band than in the humans (theta vs. alpha). Both species also had alterations in higher-frequency bands in fragile X, but Kornfeld-Sylla noted that the differences in the low-frequency brainwaves are easier to measure and more reliable in humans, making them a more promising biomarker.

So what patterns constitute the biomarker? In adult men and mice alike, a peak in the power of low-frequency waves is shifted to a significantly slower frequency in fragile X cases compared to in neurotypical cases. Meanwhile, in fragile X boys and juvenile mice, while the peak is somewhat shifted to a slower frequency, what is really significant is a reduced power in that same peak.

The researchers were also able to discern that the peak in question is actually made of two distinct subpeaks, and that the lower-frequency subpeak is the one that varies specifically with fragile X syndrome.

Curious about the neural activity underlying the measurements, the researchers engaged in experiments in which they turned off activity of two different kinds of inhibitory neurons that are known to help produce and shape brain wave patterns: somatostatin-expressing and parvalbumin-expressing interneurons. Manipulating the somatostatin neurons specifically affected the lower-frequency subpeak that contained the newly discovered biomarker in fragile X model mice.

Drug testing

Somatostatin interneurons exert their effects on the neurons they connect to via the neurotransmitter chemical GABA, and evidence from prior studies suggest that GABA receptivity is reduced in fragile X syndrome. A therapeutic approach pioneered by Bear and others has been to give the drug arbaclofen, which enhances GABA activity. In the new study, the researchers treated both control and fragile X model mice with arbaclofen to see how it affected the low-frequency biomarker.

Even the lowest administered single dose made a significant difference in the neurotypical mice, which is consistent with those mice having normal GABA responsiveness. Fragile X mice needed a higher dose, but after one was administered, there was a notable increase in the power of the key subpeak, reducing the deficit exhibited by juvenile mice.

The arbaclofen experiments therefore demonstrated that the biomarker provides a significant readout of an underlying pathophysiology of fragile X: the reduced GABA responsiveness. Bear also noted that it helped to identify a dose at which arbaclofen exerted a corrective effect, even though the drug was only administered acutely, rather than chronically. An arbaclofen therapy would, of course, be given over a long time frame, not just once.

“This is a proof of concept that a drug treatment could move this phenotype acutely in a direction that makes it closer to wild-type,” Bear says. “This effort reveals that we have readouts that can be sensitive to drug treatments.”

Meanwhile, Kornfeld-Sylla notes, there is a broad spectrum of brain disorders in which human patients exhibit significant differences in low-frequency (alpha) brain waves compared to neurotypical peers.

“Disruptions akin to the biomarker we found in this fragile X study might prove to be evident in mouse models of those other disorders, too,” she says. “Identifying this biomarker could broadly impact future translational neuroscience research.”

The paper’s other authors are Cigdem Gelegen, Jordan Norris, Francesca Chaloner, Maia Lee, Michael Khela, Maxwell Heinrich, Peter Finnie, Lauren Ethridge, Craig Erickson, Lauren Schmitt, Sam Cooke, and Carol Wilkinson.

The National Institutes of Health, the National Science Foundation, the FRAXA Foundation, the Pierce Family Fragile X Foundation, the Autism Science Foundation, the Thrasher Research Fund, Harvard University, the Simons Foundation, Wellcome, the Biotechnology and Biological Sciences Research Council, and the Freedom Together Foundation provided support for the research.



de MIT News https://ift.tt/Xni1Tlw

jueves, 19 de febrero de 2026

Chip-processing method could assist cryptography schemes to keep data secure

Just like each person has unique fingerprints, every CMOS chip has a distinctive “fingerprint” caused by tiny, random manufacturing variations. Engineers can leverage this unforgeable ID for authentication, to safeguard a device from attackers trying to steal private data.

But these cryptographic schemes typically require secret information about a chip’s fingerprint to be stored on a third-party server. This creates security vulnerabilities and requires additional memory and computation.

To overcome this limitation, MIT engineers developed a manufacturing method that enables secure, fingerprint-based authentication, without the need to store secret information outside the chip.

They split a specially designed chip during fabrication in such a way that each half has an identical, shared fingerprint that is unique to these two chips. Each chip can be used to directly authenticate the other. This low-cost fingerprint fabrication method is compatible with standard CMOS foundry processes and requires no special materials.

The technique could be useful in power-constrained electronic systems with non-interchangeable device pairs, like an ingestible sensor pill and its paired wearable patch that monitor gastrointestinal health conditions. Using a shared fingerprint, the pill and patch can authenticate each other without a device in between to mediate.

“The biggest advantage of this security method is that we don’t need to store any information. All the secrets will always remain safe inside the silicon. This can give a higher level of security. As long as you have this digital key, you can always unlock the door,” says Eunseok Lee, an electrical engineering and computer science (EECS) graduate student and lead author of a paper on this security method.

Lee is joined on the paper by EECS graduate students Jaehong Jung and Maitreyi Ashok; as well as co-senior authors Anantha Chandrakasan, MIT provost and the Vannevar Bush Professor of Electrical Engineering and Computer Science, and Ruonan Han, a professor of EECS and a member of the MIT Research Laboratory of Electronics. The research was recently presented at the IEEE International Solid-States Circuits Conference.

“Creation of shared encryption keys in trusted semiconductor foundries could help break the tradeoffs between being more secure and more convenient to use for protection of data transmission,” Han says. “This work, which is digital-based, is still a preliminary trial in this direction; we are exploring how more complex, analog-based secrecy can be duplicated — and only duplicated once.”

Leveraging variations

Even though they are intended to be identical, each CMOS chip is slightly different due to unavoidable microscopic variations during fabrication. These randomizations give each chip a unique identifier, known as a physical unclonable function (PUF), that is nearly impossible to replicate.

A chip’s PUF can be used to provide security just like the human fingerprint identification system on a laptop or door panel.

For authentication, a server sends a request to the device, which responds with a secret key based on its unique physical structure. If the key matches an expected value, the server authenticates the device.

But the PUF authentication data must be registered and stored in a server for access later, creating a potential security vulnerability.

“If we don’t need to store information on these unique randomizations, then the PUF becomes even more secure,” Lee says.

The researchers wanted to accomplish this by developing a matched PUF pair on two chips. One could authenticate the other directly, without the need to store PUF data on third-party servers.

As an analogy, consider a sheet of paper torn in half. The torn edges are random and unique, but the pieces have a shared randomness because they fit back together perfectly along the torn edge.

While CMOS chips aren’t torn in half like paper, many are fabricated at once on a silicon wafer which is diced to separate the individual chips.

By incorporating shared randomness at the edge of two chips before they are diced to separate them, the researchers could create a twin PUF that is unique to these two chips.

“We needed to find a way to do this before the chip leaves the foundry, for added security. Once the fabricated chip enters the supply chain, we won’t know what might happen to it,” Lee explains.

Sharing randomness

To create the twin PUF, the researchers change the properties of a set of transistors fabricated along the edge of two chips, using a process called gate oxide breakdown.

Essentially, they pump high voltage into a pair of transistors by shining light with a low-cost LED until the first transistor breaks down. Because of tiny manufacturing variations, each transistor has a slightly different breakdown time. The researchers can use this unique breakdown state as the basis for a PUF.

To enable a twin PUF, the MIT researchers fabricate two pairs of transistors along the edge of two chips before they are diced to separate them. By connecting the transistors with metal layers, they create paired structures that have correlated breakdown states. In this way, they enable a unique PUF to be shared by each pair of transistors.

After shining LED light to create the PUF, they dice the chips between the transistors so there is one pair on each device, giving each separate chip a shared PUF.

“In our case, transistor breakdown has not been modeled well in many of the simulations we had, so there was a lot of uncertainty about how the process would work. Figuring out all the steps, and the order they needed to happen, to generate this shared randomness is the novelty of this work,” Lee says.

After finetuning their PUF generation process, the researchers developed a prototype pair of twin PUF chips in which the randomization was matched with more than 98 percent reliability. This would ensure the generated PUF key matches consistently, enabling secure authentication.

Because they generated this twin PUF using circuit techniques and low-cost LEDs, the process would be easier to implement at scale than other methods that are more complicated or not compatible with standard CMOS fabrication.

“In the current design, shared randomness generated by transistor breakdown is immediately converted into digital data. Future versions could preserve this shared randomness directly within the transistors, strengthening security at the most fundamental physical level of the chip,” Lee says.

“There is a rapidly increasing demand for physical-layer security for edge devices, such as between medical sensors and devices on a body, which often operate under strict energy constraints. A twin-paired PUF approach enables secure communication between nodes without the burden of heavy protocol overhead, thereby delivering both energy efficiency and strong security. This initial demonstration paves the way for innovative advancements in secure hardware design,” Chandrakasan adds.

This work is funded by Lockheed Martin, the MIT School of Engineering MathWorks Fellowship, and the Korea Foundation for Advanced Studies Fellowship.



de MIT News https://ift.tt/o0VeDxa

Study: AI chatbots provide less-accurate information to vulnerable users

Large language models (LLMs) have been championed as tools that could democratize access to information worldwide, offering knowledge in a user-friendly interface regardless of a person’s background or location. However, new research from MIT’s Center for Constructive Communication (CCC) suggests these artificial intelligence systems may actually perform worse for the very users who could most benefit from them.

A study conducted by researchers at CCC, which is based at the MIT Media Lab, found that state-of-the-art AI chatbots — including OpenAI’s GPT-4, Anthropic’s Claude 3 Opus, and Meta’s Llama 3 — sometimes provide less-accurate and less-truthful responses to users who have lower English proficiency, less formal education, or who originate from outside the United States. The models also refuse to answer questions at higher rates for these users, and in some cases, respond with condescending or patronizing language.

“We were motivated by the prospect of LLMs helping to address inequitable information accessibility worldwide,” says lead author Elinor Poole-Dayan SM ’25, a technical associate in the MIT Sloan School of Management who led the research as a CCC affiliate and master’s student in media arts and sciences. “But that vision cannot become a reality without ensuring that model biases and harmful tendencies are safely mitigated for all users, regardless of language, nationality, or other demographics.”

A paper describing the work, “LLM Targeted Underperformance Disproportionately Impacts Vulnerable Users,” was presented at the AAAI Conference on Artificial Intelligence in January.

Systematic underperformance across multiple dimensions

For this research, the team tested how the three LLMs responded to questions from two datasets: TruthfulQA and SciQ. TruthfulQA is designed to measure a model’s truthfulness (by relying on common misconceptions and literal truths about the real world), while SciQ contains science exam questions testing factual accuracy. The researchers prepended short user biographies to each question, varying three traits: education level, English proficiency, and country of origin.

Across all three models and both datasets, the researchers found significant drops in accuracy when questions came from users described as having less formal education or being non-native English speakers. The effects were most pronounced for users at the intersection of these categories: those with less formal education who were also non-native English speakers saw the largest declines in response quality.

The research also examined how country of origin affected model performance. Testing users from the United States, Iran, and China with equivalent educational backgrounds, the researchers found that Claude 3 Opus in particular performed significantly worse for users from Iran on both datasets.

“We see the largest drop in accuracy for the user who is both a non-native English speaker and less educated,” says Jad Kabbara, a research scientist at CCC and a co-author on the paper. “These results show that the negative effects of model behavior with respect to these user traits compound in concerning ways, thus suggesting that such models deployed at scale risk spreading harmful behavior or misinformation downstream to those who are least able to identify it.”

Refusals and condescending language

Perhaps most striking were the differences in how often the models refused to answer questions altogether. For example, Claude 3 Opus refused to answer nearly 11 percent of questions for less educated, non-native English-speaking users — compared to just 3.6 percent for the control condition with no user biography.

When the researchers manually analyzed these refusals, they found that Claude responded with condescending, patronizing, or mocking language 43.7 percent of the time for less-educated users, compared to less than 1 percent for highly educated users. In some cases, the model mimicked broken English or adopted an exaggerated dialect.

The model also refused to provide information on certain topics specifically for less-educated users from Iran or Russia, including questions about nuclear power, anatomy, and historical events — even though it answered the same questions correctly for other users.

“This is another indicator suggesting that the alignment process might incentivize models to withhold information from certain users to avoid potentially misinforming them, although the model clearly knows the correct answer and provides it to other users,” says Kabbara.

Echoes of human bias

The findings mirror documented patterns of human sociocognitive bias. Research in the social sciences has shown that native English speakers often perceive non-native speakers as less educated, intelligent, and competent, regardless of their actual expertise. Similar biased perceptions have been documented among teachers evaluating non-native English-speaking students.

“The value of large language models is evident in their extraordinary uptake by individuals and the massive investment flowing into the technology,” says Deb Roy, professor of media arts and sciences, CCC director, and a co-author on the paper. “This study is a reminder of how important it is to continually assess systematic biases that can quietly slip into these systems, creating unfair harms for certain groups without any of us being fully aware.”

The implications are particularly concerning given that personalization features — like ChatGPT’s Memory, which tracks user information across conversations — are becoming increasingly common. Such features risk differentially treating already-marginalized groups.

“LLMs have been marketed as tools that will foster more equitable access to information and revolutionize personalized learning,” says Poole-Dayan. “But our findings suggest they may actually exacerbate existing inequities by systematically providing misinformation or refusing to answer queries to certain users. The people who may rely on these tools the most could receive subpar, false, or even harmful information.”



de MIT News https://ift.tt/Nri2kad

Exposing biases, moods, personalities, and abstract concepts hidden in large language models

By now, ChatGPT, Claude, and other large language models have accumulated so much human knowledge that they’re far from simple answer-generators; they can also express abstract concepts, such as certain tones, personalities, biases, and moods. However, it’s not obvious exactly how these models represent abstract concepts to begin with from the knowledge they contain.

Now a team from MIT and the University of California San Diego has developed a way to test whether a large language model (LLM) contains hidden biases, personalities, moods, or other abstract concepts. Their method can zero in on connections within a model that encode for a concept of interest. What’s more, the method can then manipulate, or “steer” these connections, to strengthen or weaken the concept in any answer a model is prompted to give.

The team proved their method could quickly root out and steer more than 500 general concepts in some of the largest LLMs used today. For instance, the researchers could home in on a model’s representations for personalities such as “social influencer” and “conspiracy theorist,” and stances such as “fear of marriage” and “fan of Boston.” They could then tune these representations to enhance or minimize the concepts in any answers that a model generates.

In the case of the “conspiracy theorist” concept, the team successfully identified a representation of this concept within one of the largest vision language models available today. When they enhanced the representation, and then prompted the model to explain the origins of the famous “Blue Marble” image of Earth taken from Apollo 17, the model generated an answer with the tone and perspective of a conspiracy theorist.

The team acknowledges there are risks to extracting certain concepts, which they also illustrate (and caution against). Overall, however, they see the new approach as a way to illuminate hidden concepts and potential vulnerabilities in LLMs, that could then be turned up or down to improve a model’s safety or enhance its performance.

“What this really says about LLMs is that they have these concepts in them, but they’re not all actively exposed,” says Adityanarayanan “Adit” Radhakrishnan, assistant professor of mathematics at MIT. “With our method, there’s ways to extract these different concepts and activate them in ways that prompting cannot give you answers to.”

The team published their findings today in a study appearing in the journal Science. The study’s co-authors include Radhakrishnan, Daniel Beaglehole and Mikhail Belkin of UC San Diego, and Enric Boix-Adserà of the University of Pennsylvania.

A fish in a black box

As use of OpenAI’s ChatGPT, Google’s Gemini, Anthropic’s Claude, and other artificial intelligence assistants has exploded, scientists are racing to understand how models represent certain abstract concepts such as “hallucination” and “deception.” In the context of an LLM, a hallucination is a response that is false or contains misleading information, which the model has “hallucinated,” or constructed erroneously as fact.

To find out whether a concept such as “hallucination” is encoded in an LLM, scientists have often taken an approach of “unsupervised learning” — a type of machine learning in which algorithms broadly trawl through unlabeled representations to find patterns that might relate to a concept such as “hallucination.” But to Radhakrishnan, such an approach can be too broad and computationally expensive.

“It’s like going fishing with a big net, trying to catch one species of fish. You’re gonna get a lot of fish that you have to look through to find the right one,” he says. “Instead, we’re going in with bait for the right species of fish.”

He and his colleagues had previously developed the beginnings of a more targeted approach with a type of predictive modeling algorithm known as a recursive feature machine (RFM). An RFM is designed to directly identify features or patterns within data by leveraging a mathematical mechanism that neural networks — a broad category of AI models that includes LLMs — implicitly use to learn features.

Since the algorithm was an effective, efficient approach for capturing features in general, the team wondered whether they could use it to root out representations of concepts, in LLMs, which are by far the most widely used type of neural network and perhaps the least well-understood.

“We wanted to apply our feature learning algorithms to LLMs to, in a targeted way, discover representations of concepts in these large and complex models,” Radhakrishnan says.

Converging on a concept

The team’s new approach identifies any concept of interest within a LLM and “steers” or guides a model’s response based on this concept. The researchers looked for 512 concepts within five classes: fears (such as of marriage, insects, and even buttons); experts (social influencer, medievalist); moods (boastful, detachedly amused); a preference for locations (Boston, Kuala Lumpur); and personas (Ada Lovelace, Neil deGrasse Tyson).

The researchers then searched for representations of each concept in several of today’s large language and vision models. They did so by training RFMs to recognize numerical patterns in an LLM that could represent a particular concept of interest.

A standard large language model is, broadly, a neural network that takes a natural language prompt, such as “Why is the sky blue?” and divides the prompt into individual words, each of which is encoded mathematically as a list, or vector, of numbers. The model takes these vectors through a series of computational layers, creating matrices of many numbers that, throughout each layer, are used to identify other words that are most likely to be used to respond to the original prompt. Eventually, the layers converge on a set of numbers that is decoded back into text, in the form of a natural language response.

The team’s approach trains RFMs to recognize numerical patterns in an LLM that could be associated with a specific concept. As an example, to see whether an LLM contains any representation of a “conspiracy theorist,” the researchers would first train the algorithm to identify patterns among LLM representations of 100 prompts that are clearly related to conspiracies, and 100 other prompts that are not. In this way, the algorithm would learn patterns associated with the conspiracy theorist concept. Then, the researchers can mathematically modulate the activity of the conspiracy theorist concept by perturbing LLM representations with these identified patterns. 

The method can be applied to search for and manipulate any general concept in an LLM. Among many examples, the researchers identified representations and manipulated an LLM to give answers in the tone and perspective of a “conspiracy theorist.” They also identified and enhanced the concept of “anti-refusal,” and showed that whereas normally, a model would be programmed to refuse certain prompts, it instead answered, for instance giving instructions on how to rob a bank.

Radhakrishnan says the approach can be used to quickly search for and minimize vulnerabilities in LLMs. It can also be used to enhance certain traits, personalities, moods, or preferences, such as emphasizing the concept of “brevity” or “reasoning” in any response an LLM generates. The team has made the method’s underlying code publicly available.

“LLMs clearly have a lot of these abstract concepts stored within them, in some representation,” Radhakrishnan says. “There are ways where, if we understand these representations well enough, we can build highly specialized LLMs that are still safe to use but really effective at certain tasks.”

This work was supported, in part, by the National Science Foundation, the Simons Foundation, the TILOS institute, and the U.S. Office of Naval Research. 



de MIT News https://ift.tt/3K9rJov

A neural blueprint for human-like intelligence in soft robots

A new artificial intelligence control system enables soft robotic arms to learn a wide repertoire of motions and tasks once, then adjust to new scenarios on the fly, without needing retraining or sacrificing functionality. 

This breakthrough brings soft robotics closer to human-like adaptability for real-world applications, such as in assistive robotics, rehabilitation robots, and wearable or medical soft robots, by making them more intelligent, versatile, and safe.

The work was led by the Mens, Manus and Machina (M3S) interdisciplinary research group — a play on the Latin MIT motto “mens et manus,” or “mind and hand,” with the addition of “machina” for “machine” — within the Singapore-MIT Alliance for Research and Technology. Co-leading the project are researchers from the National University of Singapore (NUS), alongside collaborators from MIT and Nanyang Technological University in Singapore (NTU Singapore).

Unlike regular robots that move using rigid motors and joints, soft robots are made from flexible materials such as soft rubber and move using special actuators — components that act like artificial muscles to produce physical motion. While their flexibility makes them ideal for delicate or adaptive tasks, controlling soft robots has always been a challenge because their shape changes in unpredictable ways. Real-world environments are often complicated and full of unexpected disturbances, and even small changes in conditions — like a shift in weight, a gust of wind, or a minor hardware fault — can throw off their movements. 

Despite substantial progress in soft robotics, existing approaches often can only achieve one or two of the three capabilities needed for soft robots to operate intelligently in real-world environments: using what they’ve learned from one task to perform a different task, adapting quickly when the situation changes, and guaranteeing that the robot will stay stable and safe while adapting its movements. This lack of adaptability and reliability has been a major barrier to deploying soft robots in real-world applications until now.

In an open-access study titled “A general soft robotic controller inspired by neuronal structural and plastic synapses that adapts to diverse arms, tasks, and perturbations,” published Jan. 6 in Science Advances, the researchers describe how they developed a new AI control system that allows soft robots to adapt across diverse tasks and disturbances. The study takes inspiration from the way the human brain learns and adapts, and was built on extensive research in learning-based robotic control, embodied intelligence, soft robotics, and meta-learning.

The system uses two complementary sets of “synapses” — connections that adjust how the robot moves — working in tandem. The first set, known as “structural synapses”, is trained offline on a variety of foundational movements, such as bending or extending a soft arm smoothly. These form the robot’s built‑in skills and provide a strong, stable foundation. The second set, called “plastic synapses,” continually updates online as the robot operates, fine-tuning the arm’s behavior to respond to what is happening in the moment. A built-in stability measure acts like a safeguard, so even as the robot adjusts during online adaptation, its behavior remains smooth and controlled.

“Soft robots hold immense potential to take on tasks that conventional machines simply cannot, but true adoption requires control systems that are both highly capable and reliably safe. By combining structural learning with real-time adaptiveness, we’ve created a system that can handle the complexity of soft materials in unpredictable environments,” says MIT Professor Daniela Rus, co-lead principal investigator at M3S, director of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), and co-corresponding author of the paper. “It’s a step closer to a future where versatile soft robots can operate safely and intelligently alongside people — in clinics, factories, or everyday lives.”

“This new AI control system is one of the first general soft-robot controllers that can achieve all three key aspects needed for soft robots to be used in society and various industries. It can apply what it learned offline across different tasks, adapt instantly to new conditions, and remain stable throughout — all within one control framework,” says Associate Professor Zhiqiang Tang, first author and co-corresponding author of the paper who was a postdoc at M3S and at NUS when he carried out the research and is now an associate professor at Southeast University in China (SEU China).

The system supports multiple task types, enabling soft robotic arms to execute trajectory tracking, object placement, and whole-body shape regulation within one unified approach. The method also generalizes across different soft-arm platforms, demonstrating cross-platform applicability. 

The system was tested and validated on two physical platforms — a cable-driven soft arm and a shape-memory-alloy–actuated soft arm — and delivered impressive results. It achieved a 44–55 percent reduction in tracking error under heavy disturbances; over 92 percent shape accuracy under payload changes, airflow disturbances, and actuator failures; and stable performance even when up to half of the actuators failed. 

“This work redefines what’s possible in soft robotics. We’ve shifted the paradigm from task-specific tuning and capabilities toward a truly generalizable framework with human-like intelligence. It is a breakthrough that opens the door to scalable, intelligent soft machines capable of operating in real-world environments,” says Professor Cecilia Laschi, co-corresponding author and principal investigator at M3S, Provost’s Chair Professor in the NUS Department of Mechanical Engineering at the College of Design and Engineering, and director of the NUS Advanced Robotics Centre.

This breakthrough opens doors for more robust soft robotic systems to develop manufacturing, logistics, inspection, and medical robotics without the need for constant reprogramming — reducing downtime and costs. In health care, assistive and rehabilitation devices can automatically tailor their movements to a patient’s changing strength or posture, while wearable or medical soft robots can respond more sensitively to individual needs, improving safety and patient outcomes.

The researchers plan to extend this technology to robotic systems or components that can operate at higher speeds and more complex environments, with potential applications in assistive robotics, medical devices, and industrial soft manipulators, as well as integration into real-world autonomous systems.

The research conducted at SMART was supported by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise program.



de MIT News https://ift.tt/os49HO6

miércoles, 18 de febrero de 2026

Parking-aware navigation system could prevent frustration and emissions

It happens every day — a motorist heading across town checks a navigation app to see how long the trip will take, but they find no parking spots available when they reach their destination. By the time they finally park and walk to their destination, they’re significantly later than they expected to be.

Most popular navigation systems send drivers to a location without considering the extra time that could be needed to find parking. This causes more than just a headache for drivers. It can worsen congestion and increase emissions by causing motorists to cruise around looking for a parking spot. This underestimation could also discourage people from taking mass transit because they don’t realize it might be faster than driving and parking.

MIT researchers tackled this problem by developing a system that can be used to identify parking lots that offer the best balance of proximity to the desired location and likelihood of parking availability. Their adaptable method points users to the ideal parking area rather than their destination.

In simulated tests with real-world traffic data from Seattle, this technique achieved time savings of up to 66 percent in the most congested settings. For a motorist, this would reduce travel time by about 35 minutes, compared to waiting for a spot to open in the closest parking lot.

While they haven’t designed a system ready for the real world yet, their demonstrations show the viability of this approach and indicate how it could be implemented.

“This frustration is real and felt by a lot of people, and the bigger issue here is that systematically underestimating these drive times prevents people from making informed choices. It makes it that much harder for people to make shifts to public transit, bikes, or alternative forms of transportation,” says MIT graduate student Cameron Hickert, lead author on a paper describing the work.

Hickert is joined on the paper by Sirui Li PhD ’25; Zhengbing He, a research scientist in the Laboratory for Information and Decision Systems (LIDS); and senior author Cathy Wu, the Class of 1954 Career Development Associate Professor in Civil and Environmental Engineering (CEE) and the Institute for Data, Systems, and Society (IDSS) at MIT, and a member of LIDS. The research appears today in Transactions on Intelligent Transportation Systems.

Probable parking

To solve the parking problem, the researchers developed a probability-aware approach that considers all possible public parking lots near a destination, the distance to drive there from a point of origin, the distance to walk from each lot to the destination, and the likelihood of parking success.

The approach, based on dynamic programming, works backward from good outcomes to calculate the best route for the user.

Their method also considers the case where a user arrives at the ideal parking lot but can’t find a space. It takes into the account the distance to other parking lots and the probability of success of parking at each.

“If there are several lots nearby that have slightly lower probabilities of success, but are very close to each other, it might be a smarter play to drive there rather than going to the higher-probability lot and hoping to find an opening. Our framework can account for that,” Hickert says.

In the end, their system can identify the optimal lot that has the lowest expected time required to drive, park, and walk to the destination.

But no motorist expects to be the only one trying to park in a busy city center. So, this method also incorporates the actions of other drivers, which affect the user’s probability of parking success.

For instance, another driver may arrive at the user’s ideal lot first and take the last parking spot. Or another motorist could try parking in another lot but then park in the user’s ideal lot if unsuccessful. In addition, another motorist may park in a different lot and cause spillover effects that lower the user’s chances of success.

“With our framework, we show how you can model all those scenarios in a very clean and principled manner,” Hickert says.

Crowdsourced parking data

The data on parking availability could come from several sources. For example, some parking lots have magnetic detectors or gates that track the number of cars entering and exiting.

But such sensors aren’t widely used, so to make their system more feasible for real-world deployment, the researchers studied the effectiveness of using crowdsourced data instead.

For instance, users could indicate available parking using an app. Data could also be gathered by tracking the number of vehicles circling to find parking, or how many enter a lot and exit after being unsuccessful.

Someday, autonomous vehicles could even report on open parking spots they drive by.

“Right now, a lot of that information goes nowhere. But if we could capture it, even by having someone simply tap ‘no parking’ in an app, that could be an important source of information that allows people to make more informed decisions,” Hickert adds.

The researchers evaluated their system using real-world traffic data from the Seattle area, simulating different times of day in a congested urban setting and a suburban area. In congested settings, their approach cut total travel time by about 60 percent compared to sitting and waiting for a spot to open, and by about 20 percent compared to a strategy of continually driving to the next closet parking lot.

They also found that crowdsourced observations of parking availability would have an error rate of only about 7 percent, compared to actual parking availability. This indicates it could be an effective way to gather parking probability data.

In the future, the researchers want to conduct larger studies using real-time route information in an entire city. They also want to explore additional avenues for gathering data on parking availability, such as using satellite images, and estimate potential emissions reductions.

“Transportation systems are so large and complex that they are really hard to change. What we look for, and what we found with this approach, is small changes that can have a big impact to help people make better choices, reduce congestion, and reduce emissions,” says Wu.

This research was supported, in part, by Cintra, the MIT Energy Initiative, and the National Science Foundation.



de MIT News https://ift.tt/QbvzJdn

How MIT OpenCourseWare is fueling one learner’s passion for education

Training for a clerical military role in France, Gustavo Barboza felt a spark he couldn’t ignore. He remembered his love of learning, which once guided him through two college semesters of mechanical engineering courses in his native Colombia, coupled with supplemental resources from MIT Open Learning’s OpenCourseWare. Now, thousands of miles away, he realized it was time to follow that spark again.

“I wasn’t ready to sit down in the classroom,” says Barboza, remembering his initial foray into higher education. “I left to try and figure out life. I realized I wanted more adventure.”

Joining the military in France in 2017 was his answer. For the first three years of service, he was very military-minded, only focused on his training and deployments. With more seniority, he took on more responsibilities, and eventually was sent to take a four-month training course on military correspondence and software. 

“I reminded myself that I like to study,” he says. “I started to go back to OpenCourseWare because I knew in the back of my mind that these very complete courses were out there.”

At that point, Barboza realized that military service was only a chapter in his life, and the next would lead him back to learning. He was still interested in engineering, and knew that MIT OpenCourseWare could help prepare him for what was next. 

He dove into OpenCourseWare’s free, online, open educational resources — which cover nearly the entire MIT curriculum — including classical mechanics, intro to electrical engineering, and single variable calculus with David Jerison, which he says was his most-visited resource. These allowed him to brush up on old skills and learn new ones, helping him tremendously in preparing for college entrance exams and his first-year courses. 

Now in his third year at Grenoble-Alpes University, Barboza studies electrical engineering, a shift from his initial interest in mechanical engineering.

“There is an OpenCourseWare lecture that explains all the specializations you can get into with electrical engineering,” he says. “They go from very natural things to things like microprocessors. What interests me is that if someone says they are an electrical engineer, there are so many different things they could be doing.” 

At this point in his academic career, Barboza is most interested in microelectronics and the study of radio frequencies and electromagnetic waves. But he admits he has more to learn and is open to where his studies may take him. 

MIT OpenCourseWare remains a valuable resource, he says. When thinking about his future, he checks out graduate course listings and considers the different paths he might take. When he is having trouble with a certain concept, he looks for a lecture on the subject, undeterred by the differences between French and U.S. conventions.  

“Of course, the science doesn't change, but the way you would write an equation or draw a circuit is different at my school in France versus what I see from MIT. So, you have to be careful,” he explains. “But it is still the first place I visit for problem sets, readings, and lecture notes. It’s amazing.”

The thoroughness and openness of MIT Open Learning’s courses and resources — like OpenCourseWare — stand out to Barboza. In the wide world of the internet, he has found resources from other universities, but he says their offerings are not as robust. And in a time of disinformation and questionable sources, he appreciates that MIT values transparency, accessibility, and knowledge. 

“Human knowledge has never been more accessible,” he says. “MIT puts coursework online and says, ‘here’s what we do.’ As long as you have an internet connection, you can learn all of it.”

“I just feel like MIT OpenCourseWare is what the internet was originally for,” Barboza continues. “A network for sharing knowledge. I’m a big fan.”

Explore lifelong learning opportunities from MIT, including courses, resources, and professional programs, on MIT Learn.



de MIT News https://ift.tt/ar6JzE5