viernes, 28 de junio de 2024

Creating the crossroads

A few years ago, Gevorg Grigoryan PhD ’07, then a professor at Dartmouth College, had been pondering an idea for data-driven protein design for therapeutic applications. Unsure how to move forward with launching that concept into a company, he dug up an old syllabus from an entrepreneurship course he took during his PhD at MIT and decided to email the instructor for the class.

He labored over the email for hours. It went from a few sentences to three pages, then back to a few sentences. Grigoryan finally hit send in the wee hours of the morning.

Just 15 minutes later, he received a response from Noubar Afeyan PhD ’87, the CEO and co-founder of venture capital company Flagship Pioneering (and the commencement speaker for the 2024 OneMIT Ceremony).

That ultimately led Grigoryan, Afeyan, and others to co-found Generate:Biomedicines, where Grigoryan now serves as chief technology officer.

“Success is defined by who is evaluating you,” Grigoryan says. “There is no right path — the best path for you is the one that works for you.”

Generalizing principles and improving lives

Generate:Biomedicines is the culmination of decades of advancements in machine learning, biological engineering, and medicine. Until recently, de novo design of a protein was extremely labor intensive, requiring months or years of computational methods and experiments.

“Now, we can just push a button and have a generative model spit out a new protein with close to perfect probability it will actually work. It will fold. It will have the structure you’re intending,” Grigoryan says. “I think we’ve unearthed these generalizable principles for how to approach understanding complex systems, and I think it’s going to keep working.”

Drug development was an obvious application for his work early on. Grigoryan says part of the reason he left academia — at least for now — are the resources available for this cutting-edge work. 

“Our space has a rather exciting and noble reason for existing,” he says. “We’re looking to improve human lives.”

Mixing disciplines

Mixed-discipline STEM majors are increasingly common, but when Grigoryan was an undergraduate, little-to-no infrastructure existed for such an education. 

“There was this emerging intersection between physics, biology, and computational sciences,” Grigoryan recalls. “It wasn’t like there was this robust discipline at the intersection of those things — but I felt like there could be, and maybe I could be part of creating one.”

He majored in biochemistry and computer science, much to the confusion of his advisors for each major. This was so unprecedented that there wasn’t even guidance for which group he should walk with at graduation.

Heading to Cambridge

Grigoryan admits his decision to attend MIT in the Department of Biology wasn’t systematic.

“I was like, ‘MIT sounds great — strong faculty, good techie school, good city. I’m sure I’ll figure something out,’” he says. “I can’t emphasize enough how important and formative those years at MIT were to who I ultimately became as a scientist.”

He worked with Amy Keating, then a junior faculty member, now head of the Department of Biology, modeling protein-protein interactions. The work involved physics, math, chemistry, and biology. The computational and systems biology PhD program was still a few years away, but the developing field was being recognized as important.

Keating remains an advisor and confidant to this day. Grigoryan also commends her for her commitment to mentoring while balancing the demands of a faculty position — acquiring funding, running a research lab, and teaching.

“It’s hard to make time to truly advise and help your students grow, but Amy is someone who took it very seriously and was very intentional about it,” Grigoryan says. “We spent a lot of time discussing ideas and doing science. The kind of impact that one can have through mentorship is hard to overestimate.”

Grigoryan next pursued a postdoc at the University of Pennsylvania with William “Bill” DeGrado, continuing to focus on protein design while gaining more experience in experimental approaches and exposure to thinking about proteins differently.

Just by examining them, DeGrado had an intuitive understanding of molecules — anticipating their functionality or what mutations would disrupt that functionality. His predictive skill surpassed the abilities of computer modeling at the time.

Grigoryan began to wonder: Could computational models use prior observations to be at least as predictive as someone who spent a lot of time considering and observing the structure and function of those molecules?

Grigoryan next went to Dartmouth for a faculty position in computer science with cross-appointments in biology and chemistry to explore that question.

Balancing industry and academia

Much of science is about trial and error, but early on, Grigoryan showed that accurate predictions of proteins and how they would bind, bond, and behave didn’t require starting from first principles. Models became more accurate by solving more structures and taking more binding measurements.

Grigoryan credits the leaders at Flagship Pioneering for their initial confidence in the possible applications for this concept — more bullish, at the time, than Grigoryan himself.

He spent four years splitting his time between Dartmouth and Cambridge and ultimately decided to leave academia altogether.

“It was inevitable because I was just so in love with what we had built at Generate,” he says. “It was so exciting for me to see this idea come to fruition.”

Pause or grow

Grigoryan says the most important thing for a company is to scale at the right time, to balance “hitting the iron while it’s hot” while considering the readiness of the company, the technology, and the market.

But even successful growth creates its own challenges.

When there are fewer than two dozen people, aligning strategies across a company is straightforward: Everyone can be in the room. However, growth — say, expanding to 200 employees — requires more deliberate communication and balancing agility while maintaining the company’s culture and identity.

“Growing is tough,” he says. “And it takes a lot of intentional effort, time, and energy to ensure a transparent culture that allows the team to thrive.”

Grigoryan’s time in academia was invaluable for learning that “everything is about people” — but academia and industry require different mindsets.

“Being a PI [principal investigator] is about creating a lane for each of your trainees, where they’re essentially somewhat independent scientists,” he says. “In a company, by construction, you are bound by a set of common goals, and you have to value your work by the amount of synergy that it has with others, as opposed to what you can do only by yourself.” 



de MIT News https://ift.tt/1NX3eYw

Study reveals why AI models that analyze medical images can be biased

Artificial intelligence models often play a role in medical diagnoses, especially when it comes to analyzing images such as X-rays. However, studies have found that these models don’t always perform well across all demographic groups, usually faring worse on women and people of color.

These models have also been shown to develop some surprising abilities. In 2022, MIT researchers reported that AI models can make accurate predictions about a patient’s race from their chest X-rays — something that the most skilled radiologists can’t do.

That research team has now found that the models that are most accurate at making demographic predictions also show the biggest “fairness gaps” — that is, discrepancies in their ability to accurately diagnose images of people of different races or genders. The findings suggest that these models may be using “demographic shortcuts” when making their diagnostic evaluations, which lead to incorrect results for women, Black people, and other groups, the researchers say.

“It’s well-established that high-capacity machine-learning models are good predictors of human demographics such as self-reported race or sex or age. This paper re-demonstrates that capacity, and then links that capacity to the lack of performance across different groups, which has never been done,” says Marzyeh Ghassemi, an MIT associate professor of electrical engineering and computer science, a member of MIT’s Institute for Medical Engineering and Science, and the senior author of the study.

The researchers also found that they could retrain the models in a way that improves their fairness. However, their approached to “debiasing” worked best when the models were tested on the same types of patients they were trained on, such as patients from the same hospital. When these models were applied to patients from different hospitals, the fairness gaps reappeared.

“I think the main takeaways are, first, you should thoroughly evaluate any external models on your own data because any fairness guarantees that model developers provide on their training data may not transfer to your population. Second, whenever sufficient data is available, you should train models on your own data,” says Haoran Zhang, an MIT graduate student and one of the lead authors of the new paper. MIT graduate student Yuzhe Yang is also a lead author of the paper, which appears today in Nature Medicine. Judy Gichoya, an associate professor of radiology and imaging sciences at Emory University School of Medicine, and Dina Katabi, the Thuan and Nicole Pham Professor of Electrical Engineering and Computer Science at MIT, are also authors of the paper.

Removing bias

As of May 2024, the FDA has approved 882 AI-enabled medical devices, with 671 of them designed to be used in radiology. Since 2022, when Ghassemi and her colleagues showed that these diagnostic models can accurately predict race, they and other researchers have shown that such models are also very good at predicting gender and age, even though the models are not trained on those tasks.

“Many popular machine learning models have superhuman demographic prediction capacity — radiologists cannot detect self-reported race from a chest X-ray,” Ghassemi says. “These are models that are good at predicting disease, but during training are learning to predict other things that may not be desirable.”

In this study, the researchers set out to explore why these models don’t work as well for certain groups. In particular, they wanted to see if the models were using demographic shortcuts to make predictions that ended up being less accurate for some groups. These shortcuts can arise in AI models when they use demographic attributes to determine whether a medical condition is present, instead of relying on other features of the images.

Using publicly available chest X-ray datasets from Beth Israel Deaconess Medical Center in Boston, the researchers trained models to predict whether patients had one of three different medical conditions: fluid buildup in the lungs, collapsed lung, or enlargement of the heart. Then, they tested the models on X-rays that were held out from the training data.

Overall, the models performed well, but most of them displayed “fairness gaps” — that is, discrepancies between accuracy rates for men and women, and for white and Black patients.

The models were also able to predict the gender, race, and age of the X-ray subjects. Additionally, there was a significant correlation between each model’s accuracy in making demographic predictions and the size of its fairness gap. This suggests that the models may be using demographic categorizations as a shortcut to make their disease predictions.

The researchers then tried to reduce the fairness gaps using two types of strategies. For one set of models, they trained them to optimize “subgroup robustness,” meaning that the models are rewarded for having better performance on the subgroup for which they have the worst performance, and penalized if their error rate for one group is higher than the others.

In another set of models, the researchers forced them to remove any demographic information from the images, using “group adversarial” approaches. Both strategies worked fairly well, the researchers found.

“For in-distribution data, you can use existing state-of-the-art methods to reduce fairness gaps without making significant trade-offs in overall performance,” Ghassemi says. “Subgroup robustness methods force models to be sensitive to mispredicting a specific group, and group adversarial methods try to remove group information completely.”

Not always fairer

However, those approaches only worked when the models were tested on data from the same types of patients that they were trained on — for example, only patients from the Beth Israel Deaconess Medical Center dataset.

When the researchers tested the models that had been “debiased” using the BIDMC data to analyze patients from five other hospital datasets, they found that the models’ overall accuracy remained high, but some of them exhibited large fairness gaps.

“If you debias the model in one set of patients, that fairness does not necessarily hold as you move to a new set of patients from a different hospital in a different location,” Zhang says.

This is worrisome because in many cases, hospitals use models that have been developed on data from other hospitals, especially in cases where an off-the-shelf model is purchased, the researchers say.

“We found that even state-of-the-art models which are optimally performant in data similar to their training sets are not optimal — that is, they do not make the best trade-off between overall and subgroup performance — in novel settings,” Ghassemi says. “Unfortunately, this is actually how a model is likely to be deployed. Most models are trained and validated with data from one hospital, or one source, and then deployed widely.”

The researchers found that the models that were debiased using group adversarial approaches showed slightly more fairness when tested on new patient groups than those debiased with subgroup robustness methods. They now plan to try to develop and test additional methods to see if they can create models that do a better job of making fair predictions on new datasets.

The findings suggest that hospitals that use these types of AI models should evaluate them on their own patient population before beginning to use them, to make sure they aren’t giving inaccurate results for certain groups.

The research was funded by a Google Research Scholar Award, the Robert Wood Johnson Foundation Harold Amos Medical Faculty Development Program, RSNA Health Disparities, the Lacuna Fund, the Gordon and Betty Moore Foundation, the National Institute of Biomedical Imaging and Bioengineering, and the National Heart, Lung, and Blood Institute.



de MIT News https://ift.tt/in4QksD

jueves, 27 de junio de 2024

Leaning into the immune system’s complexity

At any given time, millions of T cells circulate throughout the human body, looking for potential invaders. Each of those T cells sports a different T cell receptor, which is specialized to recognize a foreign antigen.

To make it easier to understand how that army of T cells recognizes their targets, MIT Associate Professor Michael Birnbaum has developed tools that can be used to study huge numbers of these interactions at the same time.

Deciphering those interactions could eventually help researchers find new ways to reprogram T cells to target specific antigens, such as mutations found in a cancer patient’s tumor.

“T-cells are so diverse in terms of what they recognize and what they do, and there's been incredible progress in understanding this on an example-by-example basis. Now, we want to be able to understand the entirety of this process with some of the same level of sophistication that we understand the individual pieces. And we think that once we have that understanding, then we can be much better at manipulating it to positively affect disease,” Birnbaum says.

This approach could lead to improvements in immunotherapy to treat cancer, as well as potential new treatments for autoimmune disorders such as type 1 diabetes, or infections such as HIV and Covid-19.

Tackling difficult problems

Birnbaum’s interest in immunology developed early, when he was a high school student in Philadelphia. His school offered a program allowing students to work in research labs in the area, so starting in tenth grade, he did research in an immunology lab at Fox Chase Cancer Center.

“I got exposed to some of the same things I study now, actually, and so that really set me on the path of realizing that this is what I wanted to do,” Birnbaum says.

As an undergraduate at Harvard University, he enrolled in a newly established major known as chemical and physical biology. During an introductory immunology course, Birnbaum was captivated by the complexity and beauty of the immune system. He went on to earn a PhD in immunology at Stanford University, where he began to study how T cells recognize their target antigens.

T cell receptors are protein complexes found on the surfaces of T cells. These receptors are made of gene segments that can be mixed and matched to form up to 1015 different sequences. When a T cell receptor finds a foreign antigen that it recognizes, it signals the T cell to multiply and begin the process of eliminating the cells that display that antigen.

As a graduate student, Birnbaum worked on building tools to study interactions between antigens and T cells at large scales. After finishing his PhD, he spent a year doing a postdoc in a neuroscience lab at Stanford, but quickly realized he wanted to get back to immunology.

In 2016, Birnbaum was hired as a faculty member in MIT’s Department of Biological Engineering and the Koch Institute for Integrative Cancer Research. He was drawn to MIT, he says, by the willingness of scientists and engineers at the Institute to work together to take on difficult, important problems.

“There's a fearlessness to how people were willing to do that,” he says. “And the community, particularly the immunology community here, was second to none, both in terms of its quality, but also in terms of how supportive it was.”

Billions of targets

At MIT, Birnbaum’s lab focuses on T cell-antigen interactions, with the hope of eventually being able to reprogram those interactions to help fight diseases such as cancer. In 2022, he reported a new technique for analyzing these interactions at large scales.

Until then, most existing tools for studying the immune system were designed to allow for the study of a large pool of antigens exposed to one T cell (or B cell), or a large pool of immune cells encountering a small number of antigens. Birnbaum’s new method uses engineered viruses to present many different antigens to huge populations of immune cells, allowing researchers to screen huge libraries of both antigens and immune cells at the same time.

“The immune system works with millions of unique T cell receptors in each of us, and billions of possible antigen targets,” Birnbaum says. “In order to be able to really understand the immune system at scale, we spend a lot of time trying to build tools that can work at similar scales.”

This approach could enable researchers to eventually screen thousands of antigens against an entire population of B cells and T cells from an individual, which could reveal why some people naturally fight off certain viruses, such as HIV, better than others.

Using this method, Birnbaum also hopes to develop ways to reprogram T cells inside a patient’s body. Currently, T cell reprogramming requires T cells to be removed from a patient, genetically altered, and then reinfused into the patient. All of these steps could be skipped if instead the T cells were reprogrammed using the same viruses that Birnbaum’s screening technology uses. A company called Kelonia, co-founded by Birnbaum, is also working toward this goal.

To model T cell interactions at even larger scales, Birnbaum is now working with collaborators around the world to use artificial intelligence to make computational predictions of T cell-antigen interactions. The research team, which Birnbaum is leading, includes 12 labs from five countries, funded by Cancer Grand Challenges. The researchers hope to build predictive models that may help them design engineered T cells that could help treat many different diseases.

“The program is put together with a focus on whether these types of predictions are possible, but if they are, it could lead to much better understanding of what immunotherapies may work with different people. It could lead to personalized vaccine design, and it could lead to personalized T cell therapy design,” Birnbaum says.



de MIT News https://ift.tt/ekMAE6V

Two MIT films nominated for New England Emmy Awards

Two films produced by MIT were honored with Emmy nominations by the National Academy of Television Arts & Sciences Boston/New England Chapter. Both “We Are the Forest” and “No Drop to Spare” illustrate international conversations the MIT community is having about the environment and climate change.

“We Are the Forest,” produced by MIT Video Productions (MVP) at MIT Open Learning, was one of six nominees in the Education/Schools category. The documentary highlights the cultural and scientific exchange of the MIT Festival Jazz EnsembleMIT Wind Ensemble, and MIT Vocal Jazz Ensemble in the Brazilian Amazon. The excursion depicted in the film was part of the ongoing work of Frederick Harris Jr., MIT director of wind and jazz ensembles and senior lecturer in music, to combine Brazilian music and environmental research.

“No Drop to Spare,” created by the Department of Mechanical Engineering (MechE), was nominated in the Environment/Science and Video Essayist categories. The film, produced by John Freidah, MechE senior producer and creative lead, follows a team of researchers from the K. Lisa Yang Global Engineering and Research (GEAR) Center working in Kenya, Morocco, and Jordan to deploy affordable, user-driven smart irrigation technology.

“We Are the Forest” tells the story of 80 MIT student musicians who traveled to Manaus, Brazil in March 2023. Together with Indigenous Brazilian musicians and activists, the students played music, created instruments with found objects from the rainforest, and connected their musical practice to nature and culture. The trip and the documentary culminated with the concert “Hearing Amazônia: Art and Resistance.”

“We have an amazing team who are excited to tell the stories of so many great things that happen at MIT,” says Clayton Hainsworth, director for MVP. “It’s a true pleasure when we get to partner with the Institute’s community on these video projects — from Fred [Harris], with his desire for outreach of the music curriculum, giving students new perspectives and getting beyond the lab; to students getting to experience the world and seeing how that affects their next steps as they go out and make an impact.”

The documentary was produced by Hainsworth, directed by Jean Dunoyer, staff editor at MVP, and filmed by Myles Lowery, field production videographer at MVP. Hainsworth credits Dunoyer with refining the story’s main themes: the universality of music as a common human language, and the ways that Indigenous communities can teach and inform the rest of the globe about the environment and the challenges we are all facing.

“The film highlights the reach of how MIT touches the world and, more importantly, how the world touches MIT,” says Hainsworth, adding that the work was generously supported by A. Neil Pappalardo ’64 and Jane Pappalardo. 

“No Drop to Spare” evoked a similar sentiment from Freidah. “What I liked about this story was the potential for great impact,” says Freidah, discussing the MechE film’s production process. “It was global, it was being piloted in three different places in the world, with three different end users, and had three different applications. You sort of go in with an idea in mind of what the story might be, then things bubble up. In this story, as with so many stories, what rose to the top was the students and the impact they were having on the real world and end users.” 

Freidah has worked with Amos Winter SM ’05, PhD ’11, associate professor of mechanical engineering and MIT GEAR Center principal investigator, to highlight other impact global projects in the past, including producing a video in 2016. That film, “Water is Life,” explores the development of low-cost desalination systems in India. 

While the phrase “it’s an honor to be nominated” might seem cliched, it remains often used because the sentiment almost always rings true. Although neither film triumphed at this year’s awards ceremony, Freidah says there’s much to be celebrated in the final product. 

“Seeing the effect this piece had, and how it highlighted our students, that’s the success story — but it’s always nice also to receive recognition from outside.”

The 47th Boston/New England Emmy Awards Ceremony took place on June 8 at the Marriott Boston Copley Place. A list of nominees and winners can be found on the National Academy of Television Arts and Sciences Boston/New England Chapter website. 



de MIT News https://ift.tt/2yr5WTl

Wireless receiver blocks interference for better mobile device performance

The growing prevalence of high-speed wireless communication devices, from 5G mobile phones to sensors for autonomous vehicles, is leading to increasingly crowded airwaves. This makes the ability to block interfering signals that can hamper device performance an even more important — and more challenging — problem.

With these and other emerging applications in mind, MIT researchers demonstrated a new millimeter-wave multiple-input-multiple-output (MIMO) wireless receiver architecture that can handle stronger spatial interference than previous designs. MIMO systems have multiple antennas, enabling them to transmit and receive signals from different directions. Their wireless receiver senses and blocks spatial interference at the earliest opportunity, before unwanted signals have been amplified, which improves performance.

Key to this MIMO receiver architecture is a special circuit that can target and cancel out unwanted signals, known as a nonreciprocal phase shifter. By making a novel phase shifter structure that is reconfigurable, low-power, and compact, the researchers show how it can be used to cancel out interference earlier in the receiver chain.

Their receiver can block up to four times more interference than some similar devices. In addition, the interference-blocking components can be switched on and off as needed to conserve energy.

In a mobile phone, such a receiver could help mitigate signal quality issues that can lead to slow and choppy Zoom calling or video streaming.

“There is already a lot of utilization happening in the frequency ranges we are trying to use for new 5G and 6G systems. So, anything new we are trying to add should already have these interference-mitigation systems installed. Here, we’ve shown that using a nonreciprocal phase shifter in this new architecture gives us better performance. This is quite significant, especially since we are using the same integrated platform as everyone else,” says Negar Reiskarimian, the X-Window Consortium Career Development Assistant Professor in the Department of Electrical Engineering and Computer Science (EECS), a member of the Microsystems Technology Laboratories and Research Laboratory of Electronics (RLE), and the senior author of a paper on this receiver.

Reiskarimian wrote the paper with EECS graduate students Shahabeddin Mohin, who is the lead author, Soroush Araei, and Mohammad Barzgari, an RLE postdoc. The work was recently presented at the IEEE Radio Frequency Circuits Symposium and received the Best Student Paper Award.

Blocking interference

Digital MIMO systems have an analog and a digital portion. The analog portion uses antennas to receive signals, which are amplified, down-converted, and passed through an analog-to-digital converter before being processed in the digital domain of the device. In this case, digital beamforming is required to retrieve the desired signal.

But if a strong, interfering signal coming from a different direction hits the receiver at the same time as a desired signal, it can saturate the amplifier so the desired signal is drowned out. Digital MIMOs can filter out unwanted signals, but this filtering occurs later in the receiver chain. If the interference is amplified along with the desired signal, it is more difficult to filter out later.

“The output of the initial low-noise amplifier is the first place you can do this filtering with minimal penalty, so that is exactly what we are doing with our approach,” Reiskarimian says.

The researchers built and installed four nonreciprocal phase shifters immediately at the output of the first amplifier in each receiver chain, all connected to the same node. These phase shifters can pass signal in both directions and sense the angle of an incoming interfering signal. The devices can adjust their phase until they cancel out the interference.

The phase of these devices can be precisely tuned, so they can sense and cancel an unwanted signal before it passes to the rest of the receiver, blocking interference before it affects any other parts of the receiver. In addition, the phase shifters can follow signals to continue blocking interference if it changes location.

“If you start getting disconnected or your signal quality goes down, you can turn this on and mitigate that interference on the fly. Because ours is a parallel approach, you can turn it on and off with minimal effect on the performance of the receiver itself,” Reiskarimian adds.

A compact device

In addition to making their novel phase shifter architecture tunable, the researchers designed them to use less space on the chip and consume less power than typical nonreciprocal phase shifters.

Once the researchers had done the analysis to show their idea would work, their biggest challenge was translating the theory into a circuit that achieved their performance goals. At the same time, the receiver had to meet strict size restrictions and a tight power budget, or it wouldn’t be useful in real-world devices.

In the end, the team demonstrated a compact MIMO architecture on a 3.2-square-millimeter chip that could block signals which were up to four times stronger than what other devices could handle. Simpler than typical designs, their phase shifter architecture is also more energy efficient.

Moving forward, the researchers want to scale up their device to larger systems, as well as enable it to perform in the new frequency ranges utilized by 6G wireless devices. These frequency ranges are prone to powerful interference from satellites. In addition, they would like to adapt nonreciprocal phase shifters to other applications.

This research was supported, in part, by the MIT Center for Integrated Circuits and Systems.



de MIT News https://ift.tt/U6grHFD

Melissa Choi named director of MIT Lincoln Laboratory

Melissa Choi has been named the next director of MIT Lincoln Laboratory, effective July 1. Currently assistant director of the laboratory, Choi succeeds Eric Evans, who will step down on June 30 after 18 years as director.

Sharing the news in a letter to MIT faculty and staff today, Vice President for Research Ian Waitz noted Choi’s 25-year career of “outstanding technical and advisory leadership,” both at MIT and in service to the defense community.

“Melissa has a marvelous technical breadth as well as excellent leadership and management skills, and she has presented a compelling strategic vision for the Laboratory,” Waitz wrote. “She is a thoughtful, intuitive leader who prioritizes communication, collaboration, mentoring, and professional development as foundations for an organizational culture that advances her vision for Lab-wide excellence in service to the nation.”

Choi’s appointment marks a new chapter in Lincoln Laboratory’s storied history working to keep the nation safe and secure. As a federally funded research and development center operated by MIT for the Department of Defense, the laboratory has provided the government an independent perspective on critical science and technology issues of national interest for more than 70 years. Distinctive among national R&D labs, the laboratory specializes in both long-term system development and rapid demonstration of operational prototypes, to protect and defend the nation against advanced threats. In tandem with its role in developing technology for national security, the laboratory’s integral relationship with the MIT campus community enables impactful partnerships on fundamental research, teaching, and workforce development in critical science and technology areas.

“In a time of great global instability and fast-evolving threats, the mission of Lincoln Laboratory has never been more important to the nation,” says MIT President Sally Kornbluth. “It is also vital that the laboratory apply government-funded, cutting-edge technologies to solve critical problems in fields from space exploration to climate change. With her depth and breadth of experience, keen vision, and straightforward style, Melissa Choi has earned enormous trust and respect across the Lincoln and MIT communities. As Eric Evans steps down, we could not ask for a finer successor.”

Choi has served as assistant director of Lincoln Laboratory since 2019, with oversight of five of the Lab’s nine technical divisions: Biotechnology and Human Systems, Homeland Protection and Air Traffic Control, Cyber Security and Information Sciences, Communication Systems, and ISR and Tactical Systems. Engaging deeply with the needs of the broader defense community, Choi served for six years on the Air Force Scientific Advisory Board, with a term as vice chair, and was appointed to the DoD’s Threat Reduction Advisory Committee. She is currently a member of the national Defense Science Board’s Permanent Subcommittee on Threat Reduction.

Having dedicated her entire career to Lincoln Laboratory, Choi says her long tenure reflects a commitment to the lab’s work and community.

“Through my career, I have been fortunate to have had incredibly innovative and motivated people to collaborate with as we solve critical national security challenges,” Choi says. “Continuing to work with such a strong, laboratory-wide team as director is one of the most exciting aspects of the job for me.”

Success through collaboration

Choi came to Lincoln Laboratory as a technical staff member in 1999, with a doctoral degree in applied mathematics. As she progressed to lead research teams, including the Systems and Analysis Group and then the Active Optical Systems Group, Choi learned the value of pooling expertise from researchers across the laboratory.

“I was able to shift between a lot of different projects very early on in my career, from radar systems to sensor networks. Because I wasn't an expert at the time in any one of those fields, I learned to reach out to the many different experts at the laboratory,” Choi says.

Choi maintained that mindset through all of her roles at the laboratory, including as head of the Homeland Protection and Air Traffic Control Division, which she led from 2014 and 2019. In that role, she helped bring together diverse technology and human systems expertise to establish the Humanitarian Assistance and Disaster Relief Group. Among other achievements, the group provided support to FEMA and other emergency response agencies after the 2017 hurricane season caused unprecedented flooding and destruction across swaths of Texas, Florida, the Caribbean, and Puerto Rico.

“We were able to rapidly prototype and field multiple technologies to help with the recovery efforts,” Choi says. “It was an amazing example of how we can apply our national security focus to other critical national problems.”

Outside of her technical and advisory achievements, Choi has made an impact at Lincoln Laboratory through her commitments to an inclusive workplace. In 2020, she co-led the study “Preventing Discrimination and Harassment and Promoting an Inclusive Culture at MIT Lincoln Laboratory.” The work was part of a longstanding commitment to supporting colleagues in the workplace through extensive mentoring and participation in employee resource groups.

“I have felt a sense of belonging at the laboratory since the minute I came here, and I’ve had the benefit of support from leaders, mentors, and advocates since then. Improving support systems is very important to me,” says Choi, who will be the first woman to lead Lincoln Laboratory. “Everyone should be able to feel that they belong and can thrive.”

When the Covid-19 pandemic hit, Choi helped the laboratory navigate the disruptions — with its operations deemed essential — which she says taught her a lot about leading through adversity.

“We solve hard problems at the laboratory all the time, but to get thrown into a problem that we had never seen before was a learning experience,” Choi says. “We saw the entire lab come together, from leadership to each of the divisions and departments.”

That synergy has also helped Choi form strategic partnerships within and outside of the laboratory to enhance its mission. Drawing on her knowledge of the laboratory's capabilities and its history of developing impactful systems for NASA and NOAA, Choi recently led the formation of a new Civil Space Systems and Technology Office.

“We were seeing this convergence between Department of Defense and civilian space initiatives, as going to the Moon, Mars, and the cislunar area [between the earth and moon] has become a big emphasis for the entire country generally,” Choi explains. “It seemed like a good time for us to pull those two sides together and grow our NASA portfolio. It gives us a great opportunity to collaborate with MIT centrally, and it ties in with our other strategic directions.”

Building on success

Choi believes her trajectory through the technical ranks of Lincoln Laboratory will help her lead it now.

“That experience gives me a view into what it's like at multiple levels of the laboratory,” Choi says. “I’ve seen what’s worked and what hasn't worked, and I've learned from different perspectives and leadership styles. Strong leaders are crucial, but it’s important to recognize that the bulk of the work gets done by the technical, support, and administrative employees across our divisions, departments, and offices. Remembering being an early staff member helps you understand how hard and exciting the work is, and also how critical those contributions are for our mission.”

Choi says she is also looking forward to expanding the laboratory's collaboration with MIT’s main campus.

“So many areas, from AI to climate to space, have opportunity for us to come together,” Choi says. “We also have some great models of progress, like the Beaver Works Center or the Department of the Air Force – MIT Artificial Intelligence Accelerator program, that we can build from. Everyone here is very excited about doing that, and it will absolutely be a priority for me.”

Ultimately, Choi plans to lead Lincoln Laboratory using the approach that’s proven successful throughout her career.

“I believe very much that I should not be the smartest person in the room, and I rely on the smart people working with me,” Choi says. “I’m part of a team and I work with a team to lead. That has always been my style: Set a vision and goals, and empower and support the people I work with to make decisions and build on that strategy.”



de MIT News https://ift.tt/CcQSXG2

miércoles, 26 de junio de 2024

A home away from a homeland

When the Haitian Multi-Service Center opened in the Dorchester neighborhood of Boston in 1978, it quickly became a valued resource. Haitian immigrants likened it to Ellis Island, Plymouth Rock, and Haiti’s own Citadel, a prominent fort. The center, originally located in an old Victorian convent house in St. Leo Parish, provided health care, adult education, counseling, immigration and employment services, and more.

Such services require substantial funding. Before long, Boston’s Cardinal Bernard Francis Law merged the Haitian Multi-Service Center into the Greater Boston Catholic Charities network, whose deeper pockets kept the center intact. Law required that Catholic welfare promote the church’s doctrine. Catholic HIV/AIDS prevention programs started emphasizing only abstinence, not contraception. Meanwhile, the center also received state and federal funding that required grantees to promote medical “best practices” that contrasted with church doctrines.

In short, even while the center served as a community beacon, there were tensions around its funding and function — which in turn reflect bigger tensions about our civic fabric.

“These conflicts are about what the role of government is and where the line is, if there is a line, between public and private, and who ultimately is responsible for the health and well-being of individuals, families, and larger populations,” says MIT scholar Erica Caple James, who has long studied nongovernmental programs.

Now James has written a new book on the subject, “Life at the Center: Haitians and Corporate Catholicism in Boston,” published this spring by the University of California Press and offering a meticulous study of the Haitian Multi-Service Center that illuminates several issues at once.

In it, James, the Professor of Medical Anthropology and Urban Studies in MIT’s Department of Urban Studies and Planning, carefully examines the relationship between the Haitian community, the Catholic Church, and the state, analyzing how the church’s “pastoral power” is exercised and to whose benefit. The book also chronicles the work of the center’s staff, revealing how everyday actions are connected to big-picture matters of power and values. And the book explores larger questions about community, belonging, and finding meaning in work and life — things not unique to Boston’s Haitian Americans but made visible in this study.

Who makes the rules?

Trained as a psychiatric anthropologist, James has studied Haiti since the 1990s; her 2010 book “Democratic Insecurities” examined post-trauma aid programs in Haiti. James was asked to join the Haitian Multi-Service Center’s board in 2005, and served until 2010. She developed the new book as a study of a community in which she was participating.

Over several decades, Boston’s Haitian American population has become one of the city’s most significant immigrant communities. Haitians fleeing violence and insecurity often gained a foothold in the city, especially in the Dorchester and Mattapan neighborhoods as well as some suburbs. The Haitian Multi-Service Center became integral to the lives of many people trying to gain stability and prosperity. And, from residential clergy to those in need of emergency shelter, people were always at the site.

As James writes, the center “literally was a home for many stakeholders, and for others, a home away from a homeland left behind.”

Church support for the center worked partly because many Haitians felt aligned with the church, attending services and Catholic schools; in turn the church provided uniquely substantial support for the Haitian American community.

That also meant some high-profile issues were resolved according to church doctrine. For example, the center’s education efforts about HIV/AIDS transmission did not include contraception, due to the church’s emphasis on abstinence — which many workers considered less effective. Some staff members would even step outside the center to distribute condoms to community members, thus not violating policy.

“We started as a grassroots organization. … Now we have a church making decisions for the community,” said the former director of the center’s HIV/AIDS prevention programming. By 1996, the center’s adult literacy staff resigned en masse over policy differences, with some workers asserting in a 1996 memo that the church “has assumed a proprietary role over our work in the Haitian community.”

Coalition, not consensus

Another policy tension surrounding Catholic charities emerged after same-sex marriage became legal in Massachusetts in 2004. In 2005, a reporter revealed that over the previous 18 years the church had facilitated 13 adoptions of difficult-to-place children with gay couples in the state. After this practice became publicized, the church announced in 2006 that its century of adoption work would end, so as to not violate either church or state laws.

Ultimately, James says, “There are structural dimensions that were baked in, which almost inevitably produced tensions at the institutional or organizational level.”

And yet, as James chronicles attentively, there was hardly consensus about the church’s role in the center. The center’s Haitian American community members were a coalition, not a bloc; some welcomed the church’s presence at the center for spiritual or practical reasons, or both.

“Many Haitians felt there was value from [the center] being independent, but there are others who felt it would be difficult to maintain otherwise,” James says.

Some of the community members even expressed lingering respect for Boston’s Cardinal Law, a central figure of the Catholic Church abuse scandal that emerged in 2002; Law had personally championed the charitable work the church had been performing for Haitians in Boston. In this light, another question emerging from the book, James says, is, “What encourages people to remain loyal to an imperfect institution?”

Keepers of the flame

Some of the people most loyal to the Haitian Multi-Service Center were its staff, whose work James carefully details. Some staff had themselves previously benefitted from the center’s services. The institution’s loyal workers, James writes, served as “keepers of the flame,” understanding its history, building community connections, and extending their own identities through good works for others.

For these kinds of institutions, James notes, “They seem most successful when there is transparency, solidarity, a strong sense of purpose. … It [shows] why we do our jobs and what we do to find meaning.”

“Life at the Center” has generated positive feedback from other scholars. As Linda Barnes, a professor at the Boston University School of Medicine, has stated, “One could read ‘Life at the Center’ multiple times and, with each reading, encounter new dimensions. Erica Caple James's work is exceptional.”

What of the Haitian Multi-Service Center today? In 2006, it was moved and is now housed in Catholic Charities’ Yawkey Center, along with other entities. Some of the workers and community members, James notes in the book, consider the center to have died over the years, compared to its stand-alone self. Others simply consider it transformed. Many have strong feelings, one way or another, about the place that helped orient them as they forged new lives.

As James writes, “It has been difficult to reconcile the intense emotions shared by many of the Center’s stakeholders — confusion, anger, disbelief, and frustration, still expressed with intensity even decades later — alongside reminiscences of love, joy, laughter, and care in rendering service to Haitians and others in need.”

As “Life at the Center” makes clear, that intensity stems from the shared mission many people had, of finding their way in a new and unfamiliar country, in the company of others. And as James writes, in concluding the book, “fulfillment of a mission is never solely about single acts of individuals, but rather the communal striving toward aiding, educating, empowering, and instilling hope in others.”



de MIT News https://ift.tt/gb3PtmG

“UnrulyArt” creates joy and engagement, regardless of ability

An unmistakable takeaway from sessions of “UnrulyArt” is that all those “-n’ts” — can’t, needn’t, shouldn’t, won’t — which can lead people to exclude children with disabilities or cognitive, social, and behavioral impairments from creative activities, aren’t really rules. They are merely assumptions and stigmas.

When a session ends and the paint that was once flying is now just drying, the rewards that emerge are more than the individual works the children and their volunteer helpers created. There is also the joy and the intellectual engagement that maybe was experienced differently but nevertheless could be shared equally between the children and the volunteers.

When MIT professor Pawan Sinha first launched UnrulyArt in 2012, his motivation was to share the joy and fulfillment he personally found in art with children in India who had just gained their sense of sight through a program he founded called Project Prakash.

“I felt that this is an activity that may also be fun for children who have not had an opportunity to engage in art,” says Sinha, professor of vision and computational neuroscience in the Department of Brain and Cognitive Sciences (BCS). “Children with disabilities are especially deprived in this context. Societal attitudes toward art can keep it away from children who suffer from different kinds of cognitive, sensory, or motoric challenges.”

Margaret Kjelgaard, an assistant professor at Bridgewater State University and Sinha’s longtime colleague in autism research and in convening UnrulyArt sessions, says that the point of the art is the experience of creation, not demonstrations of skill.

“It’s not about fine art and being precise,” says Kjelgaard, whose autistic son had a blast participating in his own UnrulyArt session a decade ago and still enjoys art. “It’s about just creating beautiful things without constraint.”

UnrulyArt’s ability to edify both children with developmental disabilities and the scientists who study their conditions interleaves closely with the mission of the Simons Center for the Social Brain (SCSB), says Director Mriganka Sur. That’s why SCSB sponsored and helped to staff four sessions of UnrulyArt recently in Belmont and Burlington, Massachusetts.

“As an academic research center, SCSB activities focus mainly on science and scientists,” says Sur, the Newton Professor in BCS and The Picower Institute for Learning and Memory at MIT. “Our team thought this would be a wonderful opportunity for us to do something outside the box.”

Getting unruly

At a session in a small event hall in Burlington, SCSB postdocs and administrators and members of Sinha’s lab laid down tarps and set up stations of materials for dozens of elementary school children from the LABBB Educational Collaborative, which provides special education services to  schoolchildren from ages 3 through 22 from local communities. In all, UnrulyArt hosted approximately 60 children across four sessions earlier this spring, says program director Donna Goodell.

“It’s also a wonderful social opportunity as we bring different cohorts of students together to participate,” she notes.

With the room set up, kids came right in to get unruly with the facilitation of volunteers. Some children painted on sheets of paper at tables, as any other children would. Other children opted to skate around on globs of paint on a huge piece of paper on the floor. Many others, including some in wheelchairs who struggled to hold a brush, were aided by materials and techniques cleverly conceived to enable aesthetic results.

For instance, children of all abilities could drop dollops of paint on paper that, when folded over, created a symmetric design. Others freely slathered paints on boards that had been pre-masked with tape so that when the tape was removed, the final image took on the hidden structure. Yet others did the same with smaller boards where removal of a heart-shaped mask revealed a heart of a different color.

One youngster sitting on the floor with Sinha Lab graduate student Charlie Shvartsman was elated to learn that he was free to drop paint on paper and then slap it hard with his hands.

Researcher reflections

The volunteers worked hard, not only setting up and facilitating but also drying paintings and cleaning up after each session. Several of them expressed a deep sense of personal and intellectual reward from the experience.

“I paint as a hobby and wanted to experience how children on the autism spectrum react to the media, which I find very relaxing,” says Chhavi Sood, a Simons Fellow in the lab of Menicon Professor Troy Littleton in BCS, the Department of Biology, and The Picower Institute.

Sood works with fruit flies to study the molecular mechanisms by which mutation in an autism-associated gene affects neural circuit connections.

“[UnrulyArt] puts a human face to the condition and makes me appreciate the diversity of the autism spectrum,” she says. “My work is far from behavioral studies. This experience broadened my understanding of how autism spectrum disorder can manifest differently in people.”

Simons Fellow Tomoe Ishikawa, who works in the lab of BCS and Picower Institute Associate Professor Gloria Choi, says she, too, benefited from the chance to observe the children’s behavior as she helped them. She said she saw exciting moments of creativity, but also notable moments where self-control seemed challenging. As she is studying social behavior using mouse models in the lab, she says UnrulyArt helped increase her motivation to discover new therapies that could help autistic children with behavioral challenges.

Suayb Arslan, a visiting scholar in Sinha’s Lab who studies human visual perception, saw many connections between his work and what unfolded at UnrulyArt. This was visual art, after all, but then there was the importance of creativity in many facets of life, including doing research. And Arslan also valued the chance to work with children with different challenges to see how they processed what they were seeing.

He anticipated that the experience would be so valuable that he came with his wife Beyza and his daughter Reyyan, who made several creations alongside the other kids. Reyyan, he says, is enrolled in a preschool program in Cambridge that by design includes typically developing children like her with kids with various challenges and differences.

“I think that it’s important that she be around these kids to sit down together with them and enjoy the time with them, have fun with them and with the colors,” Arslan says.



de MIT News https://ift.tt/fFZW4qm

Owen Coté, military technology expert and longtime associate director of the Security Studies Program, dies at 63

Owen Coté PhD ’96, a principal research scientist with the MIT Security Studies Program (SSP), passed away on June 8 after battling cancer. He joined SSP in 1997 as associate director, a role he held for the rest of his life. He guided the program through the course of three directors — each profiting from his wise counsel, leadership skills, and sense of responsibility.

“Owen was an indomitable scholar and leader of the field of security studies,” says M. Taylor Fravel, the Arthur and Ruth Sloan Professor of Political Science and the director of SSP. “Owen was the heart and soul of SSP and a one-of-a-kind scholar, colleague, and friend. He will be greatly missed by us all.”

Having earned his doctorate in political science at MIT, Coté embodied the program’s professional and scholarly values. Through his research and his teaching, he nurtured three of the program’s core interests — the study of nuclear weapons and strategy, the study of the relationship between technological change and military practice, and the application of organization theory to understanding the behavior of military institutions.

He was the author of “The Third Battle: Innovation in the U.S. Navy’s Silent Cold War Struggle with Soviet Submarines,” a book analyzing the sources of the U.S. Navy’s success in its Cold War antisubmarine warfare effort, and a co-author of “Avoiding Nuclear Anarchy: Containing the Threat of Loose Russian Nuclear Weapons and Fissile Material.” He also wrote on the future of naval doctrine, nuclear force structure issues, and the threat of weapons of mass destruction terrorism.

He was an influential national expert on undersea warfare. According to Ford International Professor of Political Science Barry Posen, Coté’s colleague for several decades who served as SSP director from 2006 to 2019, “Owen is credited, among others, with helping the U.S. Navy see the wisdom of transforming four ‘surplus’ Ohio-class ballistic missile submarines into cruise missile platforms that serve the Navy and the country to this day.”

Coté’s principal interest in recent years was maritime “war in three dimensions” — surface, air, and subsurface — and how they interacted and changed with advancing technology. He recently completed a book manuscript on this complex history. At the time of his death, he was also preparing a manuscript that analyzed the sources of innovative military doctrine, using cases that compared U.S. Navy responses to moments in the Cold War when U.S. leaders worried about the vulnerability of land-based missiles to Soviet attack.

“No one in our field was as knowledgeable about military organizations and operations, the politics that drives security policy, and relevant theories of international relations as Owen,” according to Harvey Sapolsky, MIT Professor of Public Policy and Organization, Emeritus, and SSP director from 1989 to 2006. “And no one was more willing to share that knowledge to help others in their work.”

This broad portfolio of expertise served him well as co-editor and ultimately editor of the journal International Security, the longtime flagship journal of the security studies subfield. His colleague and editor-in-chief of International Security Steven Miller reflects that, “Owen combined a brilliant analytic mind, a mischievous sense of humor, and a passion for his work. His contribution to International Security was immense and will be missed, as I relied on his judgement with total confidence.”

Coté believed in sharing his scholarly findings with the policy community. With Cindy Williams, a principal research scientist at SSP, he helped organize and ran a series of national security simulations for military officers and Department of Defense (DoD) civilians in the national security studies program at the Elliott School of International Affairs at George Washington University. He regularly produced major conferences at MIT, with several on the U.S. nuclear attack submarine force perhaps the most influential.

He was passionate about nurturing younger scholars. In recent years, he led programs for visiting fellows at SSP: the Nuclear Security Fellows Program and the Grand Strategy, Security, and Statecraft Fellows Program.

Caitlin Talmage PhD ’11, one of his former students and now an associate professor of political science at MIT, describes Coté as "a devoted mentor and teacher. His classes sparked many dissertations, and he engaged deeply with students and their research, providing detailed feedback, often over steak dinners. Despite his towering expertise in the field of security studies, Owen was always patient, generous, and respectful toward his students. He continued to advise many even after graduation as they launched their careers, myself included. He will be profoundly missed.”

Phil Haun PhD ’10, also one of Coté’s students and now professor and director of the Rosenberg Deterrence Institute at the Naval War College, describes Coté as “a mentor, colleague, and friend to a generation of MIT SSP graduate students,” noting that “arguably his greatest achievement and legacy are the scholars he nurtured and loved.” 

As Haun notes, “Owen’s expertise, with a near encyclopedic knowledge of innovations in military technology, coupled with a gregarious personality and willingness to share his time and talent, attracted dozens of students to join in a journey to study important issues of international security. Owen’s passion for his work and his eagerness to share a meal and a drink with those with similar interests encouraged those around him. The degree to which so many MIT SSP alums have remained connected to the program is testament to the caring community of scholars that Owen helped create.”

Posen describes Coté as a “larger-than-life figure and the most courageous and determined human being I have ever met. He could light up a room when he was among people he liked, and he liked most people. He was in the office suite nearly every day of the week, including weekends, and his door was usually open. Professors, fellows, and graduate students would drop by to seek his counsel on issues of every kind, and it was not uncommon for an expected 10-minute interlude to turn into a one-hour seminar. He had a truly unique ability to understand the interaction of technology and military operations. I have never met anyone who could match him in this ability. He also knew how to really enjoy life. It is an incredible loss on many, many levels.”

As Miller notes, “I got to know Owen while serving as supervisor of his senior thesis at Harvard College in 1981–82. That was the beginning of a lifelong friendship and happily our careers remained entangled for the remainder of his life. I will miss the wonderful, decent human being, the dear friend, the warm and committed colleague. He was a brave soul, suffering much, overcoming much, and contributing much. It is deeply painful to lose such a friend.”

“Owen was kind and generous, and though he endured much, he never complained,” says Sapolsky. “He gave wonderfully organized and insightful talks, improved the writing of others with his editing, and always gave sound advice to those who were wise enough to seek it.”

After graduating from Harvard College in 1982 and before returning to graduate school, Coté worked at the Hudson Institute and the Center for Naval Analyses. He received his PhD in 1996 from MIT, where he specialized in U.S. defense policy and international security affairs.

Before joining SSP in 1997, he served as assistant director of the International Security Program at Harvard's Center for Science and International Affairs (now the Belfer Center). 

He was the son of Ann F. Coté and the late Owen R. Coté Sr. His family wrote in his obituary that at home, he was always up for a good discussion about Star Wars or Harry Potter movies. Motorcycle magazines were a lifelong passion. He was a devoted uncle to his nieces Eliza Coté, Sofia Coté, and Livia Coté, as well as his self-proclaimed “fake” niece and nephew, Sam and Nina Harrison.

In addition to his mother and his nieces, he is survived by his siblings: Mark T. Coté of Blacksburg, Virginia; Peter H. Coté and his wife Nina of Topsfield, Massachusetts; and Suzanne Coté Curtiss and her husband Robin of Cape Neddick, Maine.



de MIT News https://ift.tt/LkbmYlo

What happens during the first moments of butterfly scale formation

A butterfly’s wing is covered in hundreds of thousands of tiny scales like miniature shingles on a paper-thin roof. A single scale is as small as a speck of dust yet surprisingly complex, with a corrugated surface of ridges that help to wick away water, manage heat, and reflect light to give a butterfly its signature shimmer.

MIT researchers have now captured the initial moments during a butterfly’s metamorphosis, as an individual scale begins to develop this ridged pattern. The researchers used advanced imaging techniques to observe the microscopic features on a developing wing, while the butterfly transformed in its chrysalis.

The team continuously imaged individual scales as they grew out from the wing’s membrane. These images reveal for the first time how a scale’s initially smooth surface begins to wrinkle to form microscopic, parallel undulations. The ripple-like structures eventually grow into finely patterned ridges, which define the functions of an adult scale.

The researchers found that the scale’s transition to a corrugated surface is likely a result of “buckling” — a general mechanism that describes how a smooth surface wrinkles as it grows within a confined space.

“Buckling is an instability, something that we usually don’t want to happen as engineers,” says Mathias Kolle, associate professor of mechanical engineering at MIT. “But in this context, the organism uses buckling to initiate the growth of these intricate, functional structures.”

The team is working to visualize more stages of butterfly wing growth in hopes of revealing clues to how they might design advanced functional materials in the future.

“Given the multifunctionality of butterfly scales, we hope to understand and emulate these processes, with the aim of sustainably designing and fabricating new functional materials. These materials would exhibit tailored optical, thermal, chemical, and mechanical properties for textiles, building surfaces, vehicles — really, for generally any surface that needs to exhibit characteristics that depend on its micro- and nanoscale structure,” Kolle adds.

The team has published their results in a study appearing today in the journal Cell Reports Physical Science. The study’s co-authors include first author and former MIT postdoc Jan Totz, joint first author and postdoc Anthony McDougal, graduate student Leonie Wagner, former postdoc Sungsam Kang, professor of mechanical engineering and biomedical engineering Peter So, professor of mathematics Jörn Dunkel, and professor of material physics and chemistry Bodo Wilts of the University of Salzburg.

A live transformation

In 2021, McDougal, Kolle and their colleagues developed an approach to continuously capture microscopic details of wing growth in a butterfly during its metamorphosis. Their method involved carefully cutting through the insect’s paper-thin chrysalis and peeling away a small square of cuticle to reveal the wing’s growing membrane. They placed a small glass slide over the exposed area, then used a microscope technique developed by team member Peter So to capture continuous images of scales as they grew out of the wing membrane.

They applied the method to observe Vanessa cardui, a butterfly commonly known as a Painted Lady, which the team chose for its scale architecture, which is common to most lepidopteran species. They observed that Painted Lady scales grew along a wing membrane in precise, overlapping rows, like shingles on a rooftop. Those images provided scientists with the most continuous visualization of live butterfly wing scale growth at the microscale to date.

Four images show the butterfly; the butterfly scales; the ridges of a single scale; and an extreme closeup of few ridges.

In their new study, the team used the same approach to focus on a specific time window during scale development, to capture the initial formation of the finely structured ridges that run along a single scale in a living butterfly. Scientists know that these ridges, which run parallel to each other along the length of a single scale, like stripes in a patch of corduroy, enable many of the functions of the wing scales.

Since little is known about how these ridges are formed, the MIT team aimed to record the continuous formation of ridges in a live, developing butterfly, and decipher the organism’s ridge formation mechanisms.

“We watched the wing develop over 10 days, and got thousands of measurements of how the surfaces of scales changed on a single butterfly,” McDougal says. “We could see that early on, the surface is quite flat. As the butterfly grows, the surface begins to pop up a little bit, and then at around 41 percent of development, we see this very regular pattern of completely popped up protoridges. This whole process happens over about five hours and lays the structural foundation for the subsequent expression of patterned ridges."

Pinned down

What might be causing the initial ridges to pop up in precise alignment? The researchers suspected that buckling might be at play. Buckling is a mechanical process by which a material bows in on itself as it is subjected to compressive forces. For instance, an empty soda can buckles when squeezed from the top, down. A material can also buckle as it grows, if it is constrained, or pinned in place.

Scientists have noted that, as the cell membrane of a butterfly’s scale grows, it is effectively pinned in certain places by actin bundles — long filaments that run under the growing membrane and act as a scaffold to support the scale as it takes shape. Scientists have hypothesized that actin bundles constrain a growing membrane, similar to ropes around an inflating hot air balloon. As the butterfly’s wing scale grows, they proposed, it would bulge out between the underlying actin filaments, buckling in a way that forms a scale’s initial, parallel ridges.

To test this idea, the MIT team looked to a theoretical model that describes the general mechanics of buckling. They incorporated image data into the model, such as measurements of a scale membrane’s height at various early stages of development, and various spacings of actin bundles across a growing membrane. They then ran the model forward in time to see whether its underlying principles of mechanical buckling would produce the same ridge patterns that the team observed in the actual butterfly.

“With this modeling, we showed that we could go from a flat surface to a more undulating surface,” Kolle says. “In terms of mechanics, this indicates that buckling of the membrane is very likely what’s initiating the formation of these amazingly ordered ridges.”

“We want to learn from nature, not only how these materials function, but also how they’re formed,” McDougal says. “If you want to for instance make a wrinkled surface, which is useful for a variety of applications, this gives you two really easy knobs to tune, to tailor how those surfaces are wrinkled. You could either change the spacing of where that material is pinned, or you could change the amount of material that you grow between the pinned sections. And we saw that the butterfly is using both of these strategies.”

This research was supported in part by the National Science Foundation, the Humboldt Foundation, and the Alfred P. Sloan Foundation.



de MIT News https://ift.tt/OqdiY1P

martes, 25 de junio de 2024

Startup aims to transform the power grid with superconducting transmission lines

Last year in Woburn, Massachusetts, a power line was deployed across a 100-foot stretch of land. Passersby wouldn’t have found much interesting about the installation: The line was supported by standard utility poles, the likes of which most of us have driven by millions of times. In fact, the familiarity of the sight is a key part of the technology’s promise.

The lines are designed to transport five to 10 times the amount of power of conventional transmission lines, using essentially the same footprint and voltage level. That will be key to helping them overcome the regulatory hurdles and community opposition that has made increasing transmission capacity nearly impossible across large swaths of the globe, particularly in America and Europe, where new power distribution systems play a vital role in the shift to renewable energy and the resilience of the grid.

The lines are the product of years of work by the startup VEIR, which was co-founded by Tim Heidel ’05, SM ’06, SM ’09, PhD ’10. They make use of superconducting cables and a proprietary cooling system that will enable initial transmission capacity up to 400 megawatts and, in future versions, up to several gigawatts.

“We can deploy much higher power levels at much lower voltage, and so we can deploy the same high power but with a footprint and visual impact that is far less intrusive, and therefore can overcome a lot of the public opposition as well as siting and permitting barriers,” Heidel says.

VEIR’s solution comes at a time when more than 10,000 renewable energy projects at various stages of development are seeking permission to connect to U.S. grids. The White House has said the U.S. must more than double existing regional transmission capacity in order to reach 2035 decarbonization goals.

All of this comes as electricity demand is skyrocketing amid the increasing use of data centers and AI, and the electrification of everything from passenger vehicles to home heating systems.

Despite those trends, building high-power transmission lines remains stubbornly difficult.

“Building high-power transmission infrastructure can take a decade or more, and there’s been quite a few examples of projects that folks have had to abandon because they realize that there's just so much opposition, or there’s too much complexity to pull it off cost effectively,” Heidel says. “We can drop down in voltage but carry the same amount of power because we can build systems that operate at much higher current levels, and that’s how our lines are able to melt into the background and avoid the same opposition.”

Heidel says VEIR has built a pipeline of interested customers including utilities, data center operators, industrial companies, and renewable energy developers. VEIR is aiming to complete its first commercial-scale pilot carrying high power in 2026.

A career in energy

Over more than a decade at MIT, Heidel went from learning about the fundamentals of electrical engineering to studying the electric grid and the power sector more broadly. That journey included earning a bachelor’s, master’s, and PhD from MIT’s Department of Electrical Engineering and Computer Science as well as a master’s in MIT’s Technology and Policy Program, which he earned while working toward his PhD.

“I got the energy bug and started to focus exclusively on energy and climate in graduate school,” Heidel says.

Following his PhD, Heidel was named research director of MIT’s Future of the Electric Grid study, which was completed in 2011.

“That was a fantastic opportunity at the outset of my career to survey the entire landscape and understand challenges facing the power grid and the power sector more broadly,” Heidel says. “It gave me a good foundation for understanding the grid, how it works, who’s involved, how decisions get made, how expansion works, and it looked out over the next 30 years.”

After leaving MIT, Heidel worked at the Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) and then at Bill Gates’ Breakthrough Energy Ventures (BEV) investment firm, where he continued studying transmission.

“Just about every single decarbonization scenario and study that’s been published in the last two decades concludes that to achieve aggressive greenhouse gas emissions reductions, we’re going to have to double or triple the scale of power grids around the world,” Heidel says. “But when we looked at the data on how fast grids were being expanded, the ease with which transmission lines could be built, the cost of building new transmission, just about every indicator was heading in the wrong direction. Transmission was getting more expensive over time and taking longer to build. We desperately need to find a new solution.”

Unlike traditional transmission lines made from steel and aluminum, VEIR’s transmission lines leverage decades of progress in the development of high-temperature superconducting tapes and other materials. Some of that progress has been driven by the nuclear fusion industry, which incorporates superconducting materials into some of their nuclear reactor designs.

But the core innovation at VEIR is the cooling system. VEIR co-founder and advisor Steve Ashworth developed the rough idea for the cooling system more than 15 years ago at Los Alamos National Laboratory as part of a larger Department of Energy-funded research project. When the project was shut down, the idea was largely forgotten.

Heidel and others at Breakthrough Energy Ventures became aware of the innovation in 2019 while researching transmission. Today VEIR’s system is passively cooled with nitrogen, which runs through a vacuum-insulated pipe that surrounds a superconducting cable. Heat exchange units are also used on some transmission towers.

Heidel says transmission lines designed to carry that much power are typically far bigger than VEIR’s design, and other attempts at shrinking the footprint of high-power lines were limited to short distances underground.

“High power requires high voltage, and high voltage requires tall towers and wide right of ways, and those tall towers and those wide right of ways are deeply unpopular,” Heidel says. “That is a universal truth across just about the entire world.”

Moving power around the world

VEIR’s first alternating current (AC) overhead product line is capable of transmission capacities up to 400 megawatts and voltages of up to 69 kilovolts, and the company plans to scale to higher voltage and higher-power products in the future, including direct current (DC) lines.

VEIR will sell its equipment to the companies installing transmission lines, with a primary focus on the U.S. market.

In the longer term, Heidel believes VEIR’s technology is needed as soon as possible to meet rising electricity demands and new renewable energy projects around the globe.



de MIT News https://ift.tt/RM3FG60

sábado, 22 de junio de 2024

Designing for outer space

A new MIT course this spring asked students to design what humans might need to comfortably work in and inhabit space. The time for these creations is now. While the NASA Apollo missions saw astronauts land on the moon, collect samples, and return home, the missions planned under Artemis, NASA’s current moon exploration program, include establishing long-term bases in orbit as well as on the surface of the moon.

The cross-disciplinary design course MAS.S66/4.154/16.89 (Space Architectures) was run in parallel with the departments of Architecture, and Aeronautics and Astronautics (AeroAstro), and the MIT Media Lab’s Space Exploration Initiatives group. Thirty-five students from across the Institute registered to imagine, design, prototype, and test what might be needed to support human habitation and activities on the moon.

The course’s popularity was not surprising to the instructors.

“A lot of students at MIT are excited about space,” says Jeffrey Hoffman, one of the course instructors and professor of the practice in AeroAstro. Before teaching at MIT, Hoffman was a NASA astronaut who flew five missions aboard the space shuttle. “Certainly in AeroAstro, half the students want to be astronauts eventually, so it’s not like they hadn’t thought about living in space before. This was an opportunity to use that inspiration and work on a project that might become an actual design for real lunar habitats.”

MIT’s history with NASA, and with the Apollo missions in particular, is well documented. NASA’s first major contract for the Apollo program was awarded to MIT in 1961. Dava Newman, director of the MIT Media Lab and former NASA deputy administrator, was also a course instructor.

Preparing students for the next phase of working and living in space was the goal of this class. In addition to the Artemis missions, the rise of commercial spaceflight foretells the need to investigate these designs.

“MIT Architecture has always succeeded best at the intersection of research and practice,” says Nicholas de Monchaux, a course instructor and architecture department head. “With more and more designers being called on to design for extreme environments and conditions — including space — we see an important opportunity for research, collaboration, and new forms of practice, including an ongoing collaboration with the Media Lab and AeroAstro on designing for extreme environments.”

Designing lunar habitats

A defining aspect of the class is the blend of architecture and engineering students. Each group brought different mindsets and approaches to the questions and challenges put before them. Shared activities, guest lectures, and a week touring NASA’s Johnson Space Center in Houston, Texas; the SpaceX launch facility in Brownsville, Texas; and ICON’s 3D printing facilities for construction in Austin, Texas, provided the students with an introduction to teams already working in this field. Paramount among their lessons: an understanding of the harsh environments for which they will be designing.

Hoffman doesn’t sugarcoat what life in space is like.

“Space is one of the most hostile environments you can imagine,” he says. “You're sitting inside a spacecraft looking out the window, realizing that on the other side of that window, I'd be dead in a few seconds.”

The students were divided into seven teams to develop their projects, and the value of collaboration quickly became apparent. The teams began with a concept phase where the visions of the architects — whose impulse was to create a comfortable and livable habitat — sometimes conflicted with those of the engineers, who were more focused on the realities of the extreme environment.

Inflatable designs emerged in several projects: a modular inflatable mobile science library that could support up to four people; an inflatable habitat that can be deployed within minutes to provide short-term shelter and protection for a crew on the moon; and a semi-permanent in situ habitat for space exploration ahead of an established lunar base.

Finding a common language

“Architects and engineers tend to approach the design process differently,” says Annika Thomas, a mechanical engineering doctoral student and member of the MoonBRICCS team. “While it was a challenge to integrate these ideas early on, we found ways over time to communicate and coordinate our ideas, brought together by a common vision for the end of the project.”

Thomas’s teammates, architecture students Juan Daniel Hurtado Salazar and Mikita Klimenka, say that technical considerations in architecture are often resolved toward the middle and end of a project.

“This gives us too much space to put off the implications of our design decisions while leaving little time to resolve them,” says Salazar. “The insight of our engineers challenged every design decision from the onset with mechanical, economic, and technological implications of current space technology and material regimes. It also provided a fruitful arena to cooperatively discuss the concern that the most materially and economically optimal solutions are not always the most culturally or morally justified, as the emergence of long-term habitats brings the full gamut of an astronaut’s functional, social, and emotional needs to the forefront.”

Says Klimenka, “The wealth of knowledge and experience present within the team allowed us to meaningfully consider possible responses to producing a viable long-term habitat. While navigating both engineering and design constraints certainly required additional effort, the thinking process overall was extremely refreshing as we exposed ourselves to totally different sets of challenges that we do not typically deal with in our domains.”

Architecture graduate student Kaicheng Zhuang, who worked with engineers on the Lunar Sandbags project, says communication skills were “crucial” to the team working successfully together.

“With the engineers, it’s essential to focus on the technical feasibility and practical implementation, making sure every design element can be realistically achieved,” says Zhuang. “They needed clear, precise information about structural integrity, material properties, and functionality. On the other hand, within our architecture team, discussions often revolve around the conceptual and aesthetic aspects, such as the visual impact, spatial dynamics, and user experience.”

Molly Johnson, an AeroAstro graduate student and team member on the lunarNOMAD project, concurs. “Traditionally, for a systems engineer such as myself it is easy to wave away the small design details and say they'll be addressed without going into detail about how they'll be addressed. The architects brought in a new level of detail that helped clarify our intentions.”

The team behind Momo: a Self-Assembling Lunar Habitat created a mission profile for their design. The semi-permanent in situ habitat was designed for space exploration ahead of establishing a permanent base on the moon. The module is flexible enough to fold nearly flat for easy transport. Their project was recently profiled in DesignBoom.

Beyond Earth

The final projects showed the vast differences among the teams despite there being a “limited number of ways that you can actually keep people alive on the lunar surface,” says Cody Paige, director of Space Exploration Initiatives and a course instructor. Students needed to consider what types of materials were needed; how these would be transported and assembled; how long their structures would remain functional; and what social or human experience would be supported, among other concerns.

The hands-on experience to create life-size models was especially important in this course given that AI is becoming a larger component of so many tasks and areas of decision-making, according to Paige.

“A computer doesn’t always translate exactly into the real world, and so having the students make prototypes shows them that there is a lot of benefit in understanding the materials you’re working with, how they function in real life, and the tactile ability that you can gather by working with these materials,” says Paige.

As fantastical as some of the projects appeared — with their combination of architecture, engineering, and design — they may very well be viable soon, especially as more architects are hired to design for space and students are understanding the landscape and needs for the demanding environments.

“We need to train our students to be the pioneers at the forefront of this field,” says Skylar Tibbits, a professor in the architecture department and one of the course instructors. “The longer astronauts are in space or on the moon, we need to be designing habitats for human experiences that people will want to live in for a long time.”

The need for architects and engineers skilled in this specific field is thriving. Thomas — the engineering student on the MoonBRICCS team — is currently working on robotics for space application. Her teammate — Palak Patel — is an engineering doctoral student working on extreme environment materials for space applications. With the enthusiasm of the students, as well as the considerable real-world occupational need, the three academic units plan to continue to offer the course in the future.

“We see extending this into a multi-year program in designing for extreme environments — in space and on Earth — and are actively discussing sponsorships and partnerships,” says de Monchaux.



de MIT News https://ift.tt/V70LjeW

viernes, 21 de junio de 2024

Professor Emerita Mary-Lou Pardue, pioneering cellular and molecular biologist, dies at 90

Professor Emerita Mary-Lou Pardue, an influential faculty member in the MIT Department of Biology, died on June 1. She was 90.

Early in her career, Pardue developed a technique called in situ hybridization with her PhD advisor, Joseph Gall, which allows researchers to localize genes on chromosomes. This led to many discoveries, including critical advancements in developmental biology, our understanding of embryonic development, and the structure of chromosomes. She also studied the remarkably complex way organisms respond to stress, such as heat shock, and discovered how telomeres, the ends of chromosomes, in fruit flies differ from those of other eukaryotic organisms during cell division.

“The reason she was a professor at MIT, and why she was doing research, was first and foremost because she wanted to answer questions and make discoveries,” says longtime colleague and Professor Emerita Terry Orr-Weaver. “She had her feet cemented in a love of biology.”

In 1983, Pardue was the first woman in the School of Science at MIT to be inducted into the National Academy of Sciences. She chaired the Section of Genetics from 1991 to 1994 and served as a council member from 1995 to 1998. Among other honors, she was named a fellow of the American Academy of Arts and Sciences, where she served as a council member, and a fellow of the American Association for the Advancement of Science. She also served on numerous editorial boards and review panels, and as the vice president, president, and chair of the Genetics Society of America and president of the American Society for Cell Biology.

In the 1990s, Pardue was also one of 16 senior women on MIT’s science faculty who co-signed a letter to the dean of science claiming bias against women scientists at the Institute at the time. As a result of this letter and a subsequent study of conditions for women at the Institute, MIT in 1999 publicly admitted to having discriminated against its female faculty, and made plans to rectify the problem — a process that ultimately served as a model for academic institutions around the nation. 

Her graduate students and postdocs included Alan Spradling, Matthew Scott, Tom Cech, Paul Lasko, and Joan Ruderman.

In the minority

Pardue was born on Sept. 15, 1933, in Lexington, Kentucky. She received a BS in biology from the College of William and Mary in 1955, and she earned an MS in radiation biology from the University of Tennessee in 1959. In 1970, she received a PhD in biology for her work with Gall at Yale University.

Pardue’s career was inextricably linked to the slowly rising number of women with advanced degrees in science. During her early years as a graduate student at Yale, there were a few women with PhDs — but none held faculty positions. Indeed, Pardue assumed she would spend her career as a senior scientist working in someone else’s lab, rather than running her own.

Pardue was an avid hiker and loved to travel and spend time outdoors. She scaled peaks from the White Mountains to the Himalayas and pursued postdoctoral work in Europe at the University of Edinburgh. She was delighted to receive invitations to give faculty search seminars for the opportunity to travel to institutions across the United States — including an invitation to visit MIT.

MIT had initially rejected her job application, although the department quickly realized it had erred in missing the opportunity to recruit the talented Pardue. In the end, she spent more than 30 years as a professor in Cambridge, Massachusetts.

When Pardue joined, the biology department had two female faculty members, Lisa Steiner and Annamaria Torriani-Gorini — more women than at any other academic institution Pardue had interviewed. Pardue became an associate professor of biology in 1972, a professor in 1980, and the Boris Magasanik Professor of Biology in 1995.

“The person who made a difference” 

Pardue was known for her rigorous approach to science as well as her bright smile and support of others.

When Graham Walker, the American Cancer Society and Howard Hughes Medical Institute (HHMI) professor, joined the department in 1976, he recalled an event for meeting graduate students at which he was repeatedly mistaken for a graduate student himself. Pardue parked herself by his side to bear the task of introducing the newest faculty member.

“Mary-Lou had an art for taking care of people,” Walker says. “She was a wonderful colleague and a close friend.”

As a young faculty member, Troy Littleton — now a professor of biology, the Menicon Professor of Neuroscience, and investigator at the Picower Institute for Learning and Memory — had his first experience teaching with Pardue for an undergraduate project lab course.

“Observing how Mary-Lou was able to get the students excited about basic research was instrumental in shaping my teaching skills,” Littleton says. “Her passion for discovery was infectious, and the students loved working on basic research questions under her guidance.”

She was also a mentor for fellow women joining the department, including E.C. Whitehead Professor of Biology and HHMI investigator Tania A. Baker, who joined the department in 1992, and Orr-Weaver, the first female faculty member to join the Whitehead Institute in 1987.

“She was seriously respected as a woman scientist — as a scientist,” recalls Nancy Hopkins, the Amgen Professor of Biology Emerita. “For women of our generation, there were no role models ahead of us, and so to see that somebody could do it, and have that kind of respect, was really inspiring.”

Hopkins first encountered Pardue’s work on in situ hybridization as a graduate student. Although it wasn’t Hopkins’s field, she remembers being struck by the implications — a leap in science that today could be compared to the discoveries that are possible because of the applications of gene-editing CRISPR technology.

“The questions were very big, but the technology was small,” Hopkins says. “That you could actually do these kinds of things was kind of a miracle.”

Pardue was the person who called to give Hopkins the news that she had been elected to the National Academy of Sciences. They hadn’t worked together to that point, but Hopkins felt like Pardue had been looking out for her, and was very excited on her behalf.

Later, though, Hopkins was initially hesitant to reach out to Pardue to discuss the discrimination Hopkins had experienced as a faculty member at MIT; Pardue seemed so successful that surely her gender had not held her back. Hopkins found that women, in general, didn’t discuss the ways they had been undervalued; it was humiliating to admit to being treated unfairly.

Hopkins drafted a letter about the systemic and invisible discrimination she had experienced — but Hopkins, ever the scientist, needed a reviewer.

At a table in the corner of Rebecca’s Café, a now-defunct eatery, Pardue read the letter — and declared she’d like to sign it and take it to the dean of the School of Science.

“I knew the world had changed in that instant,” Hopkins says. “She’s the person who made the difference. She changed my life, and changed, in the end, MIT.”

MIT and the status of women

It was only when some of the tenured women faculty of the School of Science all came together that they discovered their experiences were similar. Hopkins, Pardue, Orr-Weaver, Steiner, Susan Carey, Sylvia Ceyer, Sallie “Penny” Chisholm, Suzanne Corkin, Mildred Dresselhaus, Ann Graybiel, Ruth Lehmann, Marcia McNutt, Molly Potter, Paula Malanotte-Rizzoli, Leigh Royden, and Joanne Stubbe ultimately signed a letter to Robert Birgeneau, then the dean of science.

Their efforts led to a Committee on the Status of Women Faculty in 1995, the report for which was made public in 1999. The report documented pervasive bias against women across the School of Science. In response, MIT ultimately worked to improve the working conditions of women scientists across the Institute. These efforts reverberated at academic institutions across the country.

Walker notes that creating real change requires a monumental effort of political and societal pressure — but it also requires outstanding individuals whose work surpasses the barriers holding them back.

“When Mary-Lou came to MIT, there weren’t many cracks in the glass ceiling,” he says. “I think she, in many ways, was a leader in helping to change the status of women in science by just being who she was.”

Later years

Kerry Kelley, now a research laboratory operations manager in the Yilmaz Lab at the Koch Institute for Integrative Cancer Research, joined Pardue as a technical lab assistant in 2008, Kelley’s first job at MIT. Pardue, throughout her career, was committed to hands-on work, preparing her own slides whenever possible.

“One of the biggest things I learned from her was mistakes aren’t always mistakes. If you do an experiment, and it doesn’t turn out the way you had hoped, there’s something there that you can learn from,” Kelley says. She recalls a frequent refrain with a smile: “‘It’s research. What do you do? Re-search.’”

Their birthdays were on consecutive days in September; Pardue would mark the occasion for both at Legal Seafoods in Kendall Square with bluefish, white wine, and lab members and collaborators including Kelley, Karen Traverse, and the late Paul Gregory DeBaryshe.

In the years before her death, Pardue resided at Youville House Assisted Living in Cambridge, where Kelley would often visit.

“I was sad to hear of the passing of Mary-Lou, whose seminal work expanded our understanding of chromosome structure and cellular responses to environmental stresses over more than three decades at MIT. Mary-Lou was an exceptional person who was known as a gracious mentor and a valued teacher and colleague,” says Amy Keating, head of the Department of Biology, the Jay A. Stein (1968) Professor of Biology, and professor of biological engineering. “She was kind to everyone, and she is missed by our faculty and staff. Women at MIT and beyond, including me, owe a huge debt to Mary-Lou, Nancy Hopkins, and their colleagues who so profoundly advanced opportunities for women in science.”

She is survived by a niece and nephew, Sarah Gibson and Todd Pardue.



de MIT News https://ift.tt/NjITskM