lunes, 30 de junio de 2025

New imaging technique reconstructs the shapes of hidden objects

A new imaging technique developed by MIT researchers could enable quality-control robots in a warehouse to peer through a cardboard shipping box and see that the handle of a mug buried under packing peanuts is broken.

Their approach leverages millimeter wave (mmWave) signals, the same type of signals used in Wi-Fi, to create accurate 3D reconstructions of objects that are blocked from view.

The waves can travel through common obstacles like plastic containers or interior walls, and reflect off hidden objects. The system, called mmNorm, collects those reflections and feeds them into an algorithm that estimates the shape of the object’s surface.

This new approach achieved 96 percent reconstruction accuracy on a range of everyday objects with complex, curvy shapes, like silverware and a power drill. State-of-the-art baseline methods achieved only 78 percent accuracy.

In addition, mmNorm does not require additional bandwidth to achieve such high accuracy. This efficiency could allow the method to be utilized in a wide range of settings, from factories to assisted living facilities.

For instance, mmNorm could enable robots working in a factory or home to distinguish between tools hidden in a drawer and identify their handles, so they could more efficiently grasp and manipulate the objects without causing damage.

“We’ve been interested in this problem for quite a while, but we’ve been hitting a wall because past methods, while they were mathematically elegant, weren’t getting us where we needed to go. We needed to come up with a very different way of using these signals than what has been used for more than half a century to unlock new types of applications,” says Fadel Adib, associate professor in the Department of Electrical Engineering and Computer Science, director of the Signal Kinetics group in the MIT Media Lab, and senior author of a paper on mmNorm.

Adib is joined on the paper by research assistants Laura Dodds, the lead author, and Tara Boroushaki, and former postdoc Kaichen Zhou. The research was recently presented at the Annual International Conference on Mobile Systems, Applications and Services.

Reflecting on reflections

Traditional radar techniques send mmWave signals and receive reflections from the environment to detect hidden or distant objects, a technique called back projection.

This method works well for large objects, like an airplane obscured by clouds, but the image resolution is too coarse for small items like kitchen gadgets that a robot might need to identify.

In studying this problem, the MIT researchers realized that existing back projection techniques ignore an important property known as specularity. When a radar system transmits mmWaves, almost every surface the waves strike acts like a mirror, generating specular reflections.

If a surface is pointed toward the antenna, the signal will reflect off the object to the antenna, but if the surface is pointed in a different direction, the reflection will travel away from the radar and won’t be received.

“Relying on specularity, our idea is to try to estimate not just the location of a reflection in the environment, but also the direction of the surface at that point,” Dodds says.

They developed mmNorm to estimate what is called a surface normal, which is the direction of a surface at a particular point in space, and use these estimations to reconstruct the curvature of the surface at that point.

Combining surface normal estimations at each point in space, mmNorm uses a special mathematical formulation to reconstruct the 3D object.

The researchers created an mmNorm prototype by attaching a radar to a robotic arm, which continually takes measurements as it moves around a hidden item. The system compares the strength of the signals it receives at different locations to estimate the curvature of the object’s surface.

For instance, the antenna will receive the strongest reflections from a surface pointed directly at it and weaker signals from surfaces that don’t directly face the antenna.

Because multiple antennas on the radar receive some amount of reflection, each antenna “votes” on the direction of the surface normal based on the strength of the signal it received.

“Some antennas might have a very strong vote, some might have a very weak vote, and we can combine all votes together to produce one surface normal that is agreed upon by all antenna locations,” Dodds says.

In addition, because mmNorm estimates the surface normal from all points in space, it generates many possible surfaces. To zero in on the right one, the researchers borrowed techniques from computer graphics, creating a 3D function that chooses the surface most representative of the signals received. They use this to generate a final 3D reconstruction.

Finer details

The team tested mmNorm’s ability to reconstruct more than 60 objects with complex shapes, like the handle and curve of a mug. It generated reconstructions with about 40 percent less error than state-of-the-art approaches, while also estimating the position of an object more accurately.

Their new technique can also distinguish between multiple objects, like a fork, knife, and spoon hidden in the same box. It also performed well for objects made from a range of materials, including wood, metal, plastic, rubber, and glass, as well as combinations of materials, but it does not work for objects hidden behind metal or very thick walls.

“Our qualitative results really speak for themselves. And the amount of improvement you see makes it easier to develop applications that use these high-resolution 3D reconstructions for new tasks,” Boroushaki says.

For instance, a robot can distinguish between multiple tools in a box, determine the precise shape and location of a hammer’s handle, and then plan to pick it up and use it for a task. One could also use mmNorm with an augmented reality headset, enabling a factory worker to see lifelike images of fully occluded objects.

It could also be incorporated into existing security and defense applications, generating more accurate reconstructions of concealed objects in airport security scanners or during military reconnaissance.

The researchers want to explore these and other potential applications in future work. They also want to improve the resolution of their technique, boost its performance for less reflective objects, and enable the mmWaves to effectively image  through thicker occlusions.

“This work really represents a paradigm shift in the way we are thinking about these signals and this 3D reconstruction process. We’re excited to see how the insights that we’ve gained here can have a broad impact,” Dodds says.

This work is supported, in part, by the National Science Foundation, the MIT Media Lab, and Microsoft.



de MIT News https://ift.tt/MP1EF4y

President Emeritus Reif reflects on successes as a technical leader

As an electrical engineering student at Stanford University in the late 1970s, L. Rafael Reif was working on not only his PhD but also learning a new language.

“I didn’t speak English. And I saw that it was easy to ignore somebody who doesn’t speak English well,” Reif recalled. To him, that meant speaking with conviction.

“If you have tremendous technical skills, but you cannot communicate, if you cannot persuade others to embrace that, it’s not going to go anywhere. Without the combination, you cannot persuade the powers-that-be to embrace whatever ideas you have.”

Now MIT president emeritus, Reif recently joined Anantha P. Chandrakasan, chief innovation and strategy officer and dean of the School of Engineering (SoE), for a fireside chat. Their focus: the importance of developing engineering leadership skills — such as persuasive communication — to solve the world’s most challenging problems.

SoE’s Technical Leadership and Communication Programs (TLC) sponsored the chat. TLC teaches engineering leadership, teamwork, and technical communication skills to students, from undergrads to postdocs, through its four programs: Undergraduate Practice Opportunities Program (UPOP), Gordon-MIT Engineering Leadership Program (GEL), Communication Lab (Comm Lab), and Riccio-MIT Graduate Engineering Leadership Program (GradEL).

About 175 students, faculty, and guests attended the fireside chat. Relaxed, engaging, and humorous — Reif shared anecdotes and insights about technical leadership from his decades in leadership roles at MIT.

Reif had a transformational impact on MIT. Beginning as an assistant professor of electrical engineering in 1980, he rose to head of the Department of Electrical Engineering and Computer Science (EECS), then served as provost from 2005 to 2012 and MIT president from 2012 to 2022.

He was instrumental in creating the MIT Schwarzman College of Computing in 2018, as well as establishing and growing MITx online open learning and MIT Microsystems Technology Laboratories.

With an ability to peer over the horizon and anticipate what’s coming, Reif used an array of leadership skills to develop and implement clear visions for those programs.

“One of the things that I learned from you is that as a leader, you have to envision the future and make bets,” said Chandrakasan. “And you don’t just wait around for that. You have to drive it.”

Turning new ideas into reality often meant overcoming resistance. When Reif first proposed the College of Computing to some fellow MIT leaders, “they looked at me and they said, no way. This is too hard. It’s not going to happen. It’s going to take too much money. It’s too complicated. OK, then starts the argument.”

Reif seems to have relished “the argument,” or art of persuasion, during his time at MIT. Though hearing different perspectives never hurt.

“All of us have blind spots. I always try to hear all points of view. Obviously, you can’t integrate all of it. You might say, ‘Anantha, I heard you, but I disagree with you because of this.’ So, you make the call knowing all the options. That is something non-technical that I used in my career.”

On the technical side, Reif’s background as an electrical engineer shaped his approach to leadership.

“What’s beautiful about a technical education is that you understand that you can solve anything if you start with first principles. There are first principles in just about anything that you do. If you start with those, you can solve any problem.”

Also, applying systems-level thinking is critical — understanding that organizations are really systems with interconnected parts.

“That was really useful to me. Some of you in the audience have studied this. In a system, when you start tinkering with something over here, something over there will be affected. And you have to understand that. At a place like MIT, that’s all the time!”

Reif was asked: If he were assembling a dream team to tackle the world’s biggest challenges, what skills or capabilities would he want them to have?

“I think we need people who can see things from different directions. I think we need people who are experts in different disciplines. And I think we need people who are experts in different cultures. Because to solve the big problems of the planet, we need to understand how different cultures address different things.”

Reif’s upbringing in Venezuela strongly influenced his leadership approach, particularly when it comes to empathy, a key trait he values.

“My parents were immigrants. They didn’t have an education, and they had to do whatever they could to support the family. And I remember as a little kid seeing how people humiliated them because they were doing menial jobs. And I remember how painful it was to me. It is part of my fabric to respect every individual, to notice them. I have a tremendous respect for every individual, and for the ability of every individual that didn’t have the same opportunity that all of us here have to be somebody.”

Reif’s advice to students who will be the next generation of engineering leaders is to keep learning because the challenges ahead are multidisciplinary. He also reminded them that they are the future.

“What are our assets? The people in this room. When it comes to the ecosystem of innovation in America, what we work on is to create new roadmaps, expand the roadmaps, create new industries. Without that, we have nothing. Companies do a great job of taking what you come up with and making wonderful things with it. But the ideas, whether it’s AI, whether it’s deep learning, it comes from places like this.” 



de MIT News https://ift.tt/wVdrY60

Inspiring student growth

Professors Xiao Wang and Rodrigo Verdi, both members of the 2023-25 Committed to Caring cohort, are aiding in the development of extraordinary researchers and contributing to a collaborative culture. 

“Professor Xiao Wang's caring efforts have a profound impact on the lives of her students,” one of her advisees commended.

“Rodrigo's dedication to mentoring and his unwavering support have positively impacted every student in our group,” another student praised.

For MIT graduate students, the Committed to Caring program recognizes those who go above and beyond.

Xiao Wang: Enriching, stimulating, and empowering students

Xiao Wang is a core institute member of the Broad Institute of MIT and Harvard and an associate professor in the Department of Chemistry at MIT. She started her lab in 2019 to develop and apply new chemical, biophysical, and genomic tools to better understand tissue function and dysfunction at the molecular level.

Wang goes above and beyond to create a nurturing environment that fosters growth and supports her students' personal and academic development. She makes it a priority to ensure an intellectually stimulating environment, taking the time to discuss research interests, academic goals, and personal aspirations on a weekly basis. 

In their nominations, her students emphasized that Wang understands the importance of mentorship, patiently explaining fundamental concepts, sharing insights from her own groundbreaking work, and providing her students with key scientific papers and resources to deepen their understanding of the field. 

“Professor Wang encouraged me to think critically, ask challenging questions, and explore innovative approaches to further my research,” one of her students commented.

Beyond the lab, Wang nurtures a sense of community among her research team. Her regular lab meetings are highly valued by her students, where “fellow researchers presented … findings, exchanged ideas, and received constructive feedback.”

These meetings foster collaboration, enhance communication skills, and create a supportive environment where all lab members feel empowered to share their discoveries and insights.

Wang is a dedicated and compassionate educator, and is known for her unwavering commitment to the well-being and success of her students. Her advisees not only excel academically but they also develop resilience, confidence, and a sense of belonging. 

A different student reflected that although they came from an organic chemistry background with few skills related to the chemical biology field, Wang recognized their enthusiasm and potential. She went out of her way to make sure they could have a smooth transition. “It is because of all her training and help that I came from knowing nothing about the field to being able to confidently call myself a chemical biologist,” the student acclaimed.

Her advisees communicate that Wang encourages them to present their work at conferences, workshops, and seminars. This helps boost the students’ confidence and establish connections within the scientific community.

“Her genuine care and dedication make her a cherished mentor and a source of inspiration for all who have the privilege to learn from her,” one of her mentees remarked.

Rodrigo Verdi: Committed and collaborative

Professor Rodrigo Verdi is the deputy dean of degree programs and teaching and learning at the MIT Sloan School of Management. Verdi’s research provides insights into the role of accounting information in corporate finance decisions and in capital markets behavior. 

Professor Verdi has been active in the majority of the Sloan students’ research journeys. He makes sure to assist students even if he does not directly guide them. One student states that “although Rodrigo is not my primary advisor, he still goes above and beyond to provide feedback and assistance.”

Verdi believes that “an appetite for experimentation, the ability to handle failure, and managing the stress along the way” is the kind of support necessary for especially innovative research.

Another student recounts that they “cannot think of a single recent graduate since … [they] started the PhD program that did not have Rodrigo on their committee.” This demonstrates how much students value his guidance, and how much he cares about their success.

Since his arrival at MIT, he has shown a strong commitment to mentoring students. Despite his many responsibilities as an associate dean, Rodrigo remains highly accessible to students and eagerly engages with them. 

Specifically, Verdi has interacted with more than 90 percent of recent graduates over the past 10 years, contributing significantly to the department’s strong track record in job placements. He has served on the dissertation committee for 18 students in the last 15 years, which represents nearly all of the students in the department.

A student remarked that “Rodrigo has been an exceptional advisor during my job market period, which is known for its high levels of stress.” He offered continuous encouragement and support, making himself available for discussions whenever the student faced challenges. 

After each job market interview, Verdi and the student would debrief and discuss areas for improvement. His insights into the academic system, the significance of social skills and networking, and his valuable advice helped the student successfully get a faculty position.

Rodrigo’s mantra is, “people won't care how much you know until they know how much you care,” and his relationships with his students support this maxim.

Verdi has made a lasting impact on the culture of the accounting specialty and is an important piece of the puzzle with regard to interactions found in the Sloan school. One of his students praised, “the collaborative culture is impressive: I’d call it a family, where faculty and students are very close to each other.” They described that they “share the same office space, have lunches together, and whenever students want feedback, the faculty is willing to help.” 

Verdi has sharp research insights, and always wants to help, even when he is swamped with administrative affairs. He makes himself accessible to students, often staying after hours with his door open. 

Another mentee said that “he has been organizing weekly PhD lunch seminars for years, online brown-bags among current and previous MIT accounting members during the pandemic, and more recently the annual MIT accounting alumni conference.” Verdi also takes students out for dinner or coffee, caring about how they are doing outside of academics. The student commended, “I feel lucky that Rodrigo is here.”



de MIT News https://ift.tt/TzyxF80

Accelerating scientific discovery with AI

Several researchers have taken a broad view of scientific progress over the last 50 years and come to the same troubling conclusion: Scientific productivity is declining. It’s taking more time, more funding, and larger teams to make discoveries that once came faster and cheaper. Although a variety of explanations have been offered for the slowdown, one is that, as research becomes more complex and specialized, scientists must spend more time reviewing publications, designing sophisticated experiments, and analyzing data.

Now, the philanthropically funded research lab FutureHouse is seeking to accelerate scientific research with an AI platform designed to automate many of the critical steps on the path toward scientific progress. The platform is made up of a series of AI agents specialized for tasks including information retrieval, information synthesis, chemical synthesis design, and data analysis.

FutureHouse founders Sam Rodriques PhD ’19 and Andrew White believe that by giving every scientist access to their AI agents, they can break through the biggest bottlenecks in science and help solve some of humanity’s most pressing problems.

“Natural language is the real language of science,” Rodriques says. “Other people are building foundation models for biology, where machine learning models speak the language of DNA or proteins, and that’s powerful. But discoveries aren’t represented in DNA or proteins. The only way we know how to represent discoveries, hypothesize, and reason is with natural language.”

Finding big problems

For his PhD research at MIT, Rodriques sought to understand the inner workings of the brain in the lab of Professor Ed Boyden.

“The entire idea behind FutureHouse was inspired by this impression I got during my PhD at MIT that even if we had all the information we needed to know about how the brain works, we wouldn’t know it because nobody has time to read all the literature,” Rodriques explains. “Even if they could read it all, they wouldn’t be able to assemble it into a comprehensive theory. That was a foundational piece of the FutureHouse puzzle.”

Rodriques wrote about the need for new kinds of large research collaborations as the last chapter of his PhD thesis in 2019, and though he spent some time running a lab at the Francis Crick Institute in London after graduation, he found himself gravitating toward broad problems in science that no single lab could take on.

“I was interested in how to automate or scale up science and what kinds of new organizational structures or technologies would unlock higher scientific productivity,” Rodriques says.

When Chat-GPT 3.5 was released in November 2022, Rodriques saw a path toward more powerful models that could generate scientific insights on their own. Around that time, he also met Andrew White, a computational chemist at the University of Rochester who had been granted early access to Chat-GPT 4. White had built the first large language agent for science, and the researchers joined forces to start FutureHouse.

The founders started out wanting to create distinct AI tools for tasks like literature searches, data analysis, and hypothesis generation. They began with data collection, eventually releasing PaperQA in September 2024, which Rodriques calls the best AI agent in the world for retrieving and summarizing information in scientific literature. Around the same time, they released Has Anyone, a tool that lets scientists determine if anyone has conducted specific experiments or explored specific hypotheses.

“We were just sitting around asking, ‘What are the kinds of questions that we as scientists ask all the time?’” Rodriques recalls.

When FutureHouse officially launched its platform on May 1 of this year, it rebranded some of its tools. Paper QA is now Crow, and Has Anyone is now called Owl. Falcon is an agent capable of compiling and reviewing more sources than Crow. Another new agent, Phoenix, can use specialized tools to help researchers plan chemistry experiments. And Finch is an agent designed to automate data driven discovery in biology.

On May 20, the company demonstrated a multi-agent scientific discovery workflow to automate key steps of the scientific process and identify a new therapeutic candidate for dry age-related macular degeneration (dAMD), a leading cause of irreversible blindness worldwide. In June, FutureHouse released ether0, a 24B open-weights reasoning model for chemistry.

“You really have to think of these agents as part of a larger system,” Rodriques says. “Soon, the literature search agents will be integrated with the data analysis agent, the hypothesis generation agent, an experiment planning agent, and they will all be engineered to work together seamlessly.”

Agents for everyone

Today anyone can access FutureHouse’s agents at platform.futurehouse.org. The company’s platform launch generated excitement in the industry, and stories have started to come in about scientists using the agents to accelerate research.

One of FutureHouse’s scientists used the agents to identify a gene that could be associated with polycystic ovary syndrome and come up with a new treatment hypothesis for the disease. Another researcher at the Lawrence Berkeley National Laboratory used Crow to create an AI assistant capable of searching the PubMed research database for information related to Alzheimer’s disease.

Scientists at another research institution have used the agents to conduct systematic reviews of genes relevant to Parkinson’s disease, finding FutureHouse’s agents performed better than general agents.

Rodriques says scientists who think of the agents less like Google Scholar and more like a smart assistant scientist get the most out of the platform.

“People who are looking for speculation tend to get more mileage out of Chat-GPT o3 deep research, while people who are looking for really faithful literature reviews tend to get more out of our agents,” Rodriques explains.

Rodriques also thinks FutureHouse will soon get to a point where its agents can use the raw data from research papers to test the reproducibility of its results and verify conclusions.

In the longer run, to keep scientific progress marching forward, Rodriques says FutureHouse is working on embedding its agents with tacit knowledge to be able to perform more sophisticated analyses while also giving the agents the ability to use computational tools to explore hypotheses.

“There have been so many advances around foundation models for science and around language models for proteins and DNA, that we now need to give our agents access to those models and all of the other tools people commonly use to do science,” Rodriques says. “Building the infrastructure to allow agents to use more specialized tools for science is going to be critical.”



de MIT News https://ift.tt/6dFI1H7

viernes, 27 de junio de 2025

Using generative AI to help robots jump higher and land safely

Diffusion models like OpenAI’s DALL-E are becoming increasingly useful in helping brainstorm new designs. Humans can prompt these systems to generate an image, create a video, or refine a blueprint, and come back with ideas they hadn’t considered before.

But did you know that generative artificial intelligence (GenAI) models are also making headway in creating working robots? Recent diffusion-based approaches have generated structures and the systems that control them from scratch. With or without a user’s input, these models can make new designs and then evaluate them in simulation before they’re fabricated.

A new approach from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) applies this generative know-how toward improving humans’ robotic designs. Users can draft a 3D model of a robot and specify which parts they’d like to see a diffusion model modify, providing its dimensions beforehand. GenAI then brainstorms the optimal shape for these areas and tests its ideas in simulation. When the system finds the right design, you can save and then fabricate a working, real-world robot with a 3D printer, without requiring additional tweaks.

The researchers used this approach to create a robot that leaps up an average of roughly 2 feet, or 41 percent higher than a similar machine they created on their own. The machines are nearly identical in appearance: They’re both made of a type of plastic called polylactic acid, and while they initially appear flat, they spring up into a diamond shape when a motor pulls on the cord attached to them. So what exactly did AI do differently?

A closer look reveals that the AI-generated linkages are curved, and resemble thick drumsticks (the musical instrument drummers use), whereas the standard robot’s connecting parts are straight and rectangular.

Better and better blobs

The researchers began to refine their jumping robot by sampling 500 potential designs using an initial embedding vector — a numerical representation that captures high-level features to guide the designs generated by the AI model. From these, they selected the top 12 options based on performance in simulation and used them to optimize the embedding vector.

This process was repeated five times, progressively guiding the AI model to generate better designs. The resulting design resembled a blob, so the researchers prompted their system to scale the draft to fit their 3D model. They then fabricated the shape, finding that it indeed improved the robot’s jumping abilities.

The advantage of using diffusion models for this task, according to co-lead author and CSAIL postdoc Byungchul Kim, is that they can find unconventional solutions to refine robots.

“We wanted to make our machine jump higher, so we figured we could just make the links connecting its parts as thin as possible to make them light,” says Kim. “However, such a thin structure can easily break if we just use 3D printed material. Our diffusion model came up with a better idea by suggesting a unique shape that allowed the robot to store more energy before it jumped, without making the links too thin. This creativity helped us learn about the machine’s underlying physics.”

The team then tasked their system with drafting an optimized foot to ensure it landed safely. They repeated the optimization process, eventually choosing the best-performing design to attach to the bottom of their machine. Kim and his colleagues found that their AI-designed machine fell far less often than its baseline, to the tune of an 84 percent improvement.

The diffusion model’s ability to upgrade a robot’s jumping and landing skills suggests it could be useful in enhancing how other machines are designed. For example, a company working on manufacturing or household robots could use a similar approach to improve their prototypes, saving engineers time normally reserved for iterating on those changes.

The balance behind the bounce

To create a robot that could jump high and land stably, the researchers recognized that they needed to strike a balance between both goals. They represented both jumping height and landing success rate as numerical data, and then trained their system to find a sweet spot between both embedding vectors that could help build an optimal 3D structure.

The researchers note that while this AI-assisted robot outperformed its human-designed counterpart, it could soon reach even greater new heights. This iteration involved using materials that were compatible with a 3D printer, but future versions would jump even higher with lighter materials.

Co-lead author and MIT CSAIL PhD student Tsun-Hsuan “Johnson” Wang says the project is a jumping-off point for new robotics designs that generative AI could help with.

“We want to branch out to more flexible goals,” says Wang. “Imagine using natural language to guide a diffusion model to draft a robot that can pick up a mug, or operate an electric drill.”

Kim says that a diffusion model could also help to generate articulation and ideate on how parts connect, potentially improving how high the robot would jump. The team is also exploring the possibility of adding more motors to control which direction the machine jumps and perhaps improve its landing stability.

The researchers’ work was supported, in part, by the National Science Foundation’s Emerging Frontiers in Research and Innovation program, the Singapore-MIT Alliance for Research and Technology’s Mens, Manus and Machina program, and the Gwangju Institute of Science and Technology (GIST)-CSAIL Collaboration. They presented their work at the 2025 International Conference on Robotics and Automation.



de MIT News https://ift.tt/fdoKRrw

MIT and Mass General Brigham launch joint seed program to accelerate innovations in health

Leveraging the strengths of two world-class research institutions, MIT and Mass General Brigham (MGB) recently celebrated the launch of the MIT-MGB Seed Program. The new initiative, which is supported by Analog Devices Inc. (ADI), will fund joint research projects led by researchers at MIT and Mass General Brigham. These collaborative projects will advance research in human health, with the goal of developing next-generation therapies, diagnostics, and digital tools that can improve lives at scale. 

The program represents a unique opportunity to dramatically accelerate innovations that address some of the most urgent challenges in human health. By supporting interdisciplinary teams from MIT and Mass General Brigham, including both researchers and clinicians, the seed program will foster groundbreaking work that brings together expertise in artificial intelligence, machine learning, and measurement and sensing technologies with pioneering clinical research and patient care.

“The power of this program is that it combines MIT’s strength in science, engineering, and innovation with Mass General Brigham’s world-class scientific and clinical research. With the support and incentive to work together, researchers and clinicians will have the freedom to tackle compelling problems and find novel ways to overcome them to achieve transformative changes in patient care,” says Sally Kornbluth, president of MIT.

“The MIT-MGB Seed Program will enable cross-disciplinary collaboration to advance transformative research and breakthrough science. By combining the collective strengths and expertise of our great institutions, we can transform medical care and drive innovation and discovery with speed,” says Anne Klibanski, president and CEO of Mass General Brigham.

The initiative is funded by a gift from ADI. Over the next three years, the ADI Fund for Health and Life Sciences will support approximately six joint projects annually, with funding split between the two institutions. 

“The converging domains of biology, medicine, and computing promise a new era of health-care efficacy, efficiency, and access. ADI has enjoyed a long and fruitful history of collaboration with MIT and Mass General Brigham, and we are excited by this new initiative’s potential to transform the future of patient care,” adds Vincent Roche, president and CEO of ADI.

In addition to funding, teams selected for the program will have access to entrepreneurial workshops, including some hosted by The Engine — an MIT-built venture firm focused on tough tech. These sessions will connect researchers with company founders, investors, and industry leaders, helping them chart a path from breakthrough discoveries in the lab to real-world impact.

The program will launch an open call for proposals to researchers at MIT and Mass General Brigham. The first cohort of funded projects is expected to launch in fall 2025. Awardees will be selected by a joint review committee composed of MIT and Mass General Brigham experts.

According to MIT’s faculty lead for the MIT-MGB Seed Program, Alex K. Shalek, building collaborative research teams with leaders from both institutions could help fill critical gaps that often impede innovation in health and life sciences. Shalek also serves as director of the Institute for Medical Engineering & Science (IMES), the J. W. Kieckhefer Professor in IMES and Chemistry, and an extramural member of the Koch Institute for Integrative Cancer Research.

 “Clinicians often see where current interventions fall short, but may lack the scientific tools or engineering expertise needed to develop new ones. Conversely, MIT researchers may not fully grasp these clinical challenges or have access to the right patient data and samples,” explains Shalek, who is also a member of the Ragon Institute of Mass General Brigham, MIT, and Harvard. “By supporting bilateral collaborations and building a community across disciplines, this program is poised to drive critical advances in diagnostics, therapeutics, and AI-driven health applications.”

Emery Brown, a practicing anesthesiologist at Massachusetts General Hospital, will serve alongside Shalek as Mass General Brigham’s faculty lead for the program.

“The MIT-MGB Seed Program creates a perfect storm. The program will provide an opportunity for MIT faculty to bring novel science and engineering to attack and solve important clinical problems,” adds Brown, who is also the Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience at MIT. “The pursuit of solutions to important and challenging clinical problems by Mass General Brigham physicians and scientists will no doubt spur MIT scientists and engineers to develop new technologies, or find novel applications of existing technologies.”

The MIT-MGB Seed Program is a flagship initiative in the MIT Health and Life Sciences Collaborative (MIT HEALS). It reflects MIT HEALS’ core mission to establish MIT as a central hub for health and life sciences innovation and translation, and to leverage connections with other world-class research institutions in the Boston area.

“This program exemplifies the power of interdisciplinary research,” says Anantha Chandrakasan, MIT’s chief innovation and strategy officer, dean of engineering, and head of MIT HEALS. “It creates a critical bridge between clinical practice and technological innovation — two areas that must be deeply connected to advance real-world solutions.”

The program’s launch was celebrated at a special event at MIT’s Samberg Conference Center on March 31.



de MIT News https://ift.tt/rwAxkOL

jueves, 26 de junio de 2025

Nth Cycle is bringing critical metals refining to the U.S.

Much like Middle Eastern oil production in the 1970s, China today dominates the global refinement of critical metals that serve as the foundation of the United States economy. In the 1970s, America’s oil dependence led to shortages that slowed growth and brought huge spikes in prices. But in recent decades, U.S. fracking technology created a new way to extract oil, transforming the nation from one of the world’s largest oil importers to one of the largest exporters.

Today the U.S. needs another technological breakthrough to secure domestic supplies of metals like lithium, cobalt, copper, and rare earth elements, which are needed for everything from batteries to jet engines and electric motors. Nth Cycle thinks it has a solution.

The company was co-founded by MIT Associate Professor Desirée Plata, CEO Megan O’Connor, and Chief Scientist Chad Vecitis to recover critical metals from industrial waste and ores using a patented, highly efficient technology known as electro-extraction.

“America is an incredibly resource-rich nation — it’s just a matter of extracting and converting those resources for use. That’s the role of refining,” says O’Connor, who worked on electro-extraction as a PhD student with Plata, back when both were at Duke University. “By filling that gap in the supply chain, we can make the United States the largest producer of critical metals in the world.”

Since last year, Nth Cycle has been producing cobalt and nickel using its first commercial system in Fairfield, Ohio. The company’s modular refining systems, which are powered by electricity instead of fossil fuels, can be deployed in a fraction of the time of traditional metal refining plants. Now, Nth Cycle aims to deploy its modular systems around the U.S. and Europe to establish new supply chains for the materials that power our economy.

“About 85 percent of the world’s critical minerals are refined in China, so it’s an economic and national security issue for us,” O’Connor says. “Even if we mine the materials here — we do have one operational nickel mine in Michigan — we then ship it overseas to be refined. Those materials are required components of multiple industries. Everything from our phones to our cars to our defense systems depend on them. I like to say critical minerals are the new oil.”

From waste, an opportunity

In 2014, O’Connor and Plata attended a talk by Vecitis, then a professor at Harvard University, in which he discussed his work using electrochemical filters to destroy contaminants in pharmaceutical wastewater. As part of the research, he noticed the material was reacting with metal to create crystalline copper in the filters. Following the talk, Plata asked Vecitis if he’d ever thought about using the approach for metal separation. He hadn’t but was excited to try.

At the time, Plata and O’Connor were studying mineral-dense wastewater created as a byproduct of hydraulic fracturing for oil and gas.

“The original thought was: Could we use this technology to extract those metals?” O’Connor recalls.

The focus shifted to using the technology to recover metals from electronics waste, including sources like old phones, electric vehicles, and smartwatches.

Today, manufacturers and electronic waste facilities grind up end-of-life materials and send it to huge chemical refineries overseas, which heat up the metal into a molten liquid and put it through a series of acids and bases to distill the waste back into a pure form of the desired metal.

“Each of those acids and bases have to be transported as hazardous goods, and the process for making them has a large greenhouse gas and energy footprint,” Plata explains. “That makes the economics difficult to square in anything but huge, centralized facilities — and even then it’s a challenge.”

The United States and Europe have an abundance of end-of-life scrap material, but it’s dispersed, and environmental regulations have left the West few scalable refining options.

Instead of building a refinery, Nth Cycle’s team has built a modular refining system — dubbed “The Oyster” — which can reduce costs, waste, and time-to-market by being co-located onsite with recyclers, miners, and manufacturers. The Oyster uses electricity, chemical precipitation, and filtration to create the same metal refining chemicals as traditional methods. Today, the system can process more than 3,000 metric tons of scrap per year and be customized to produce different metals.

“Electro-extraction is one of the cleanest ways to recover metal,” Plata says.

Nth Cycle received early support from the U.S. Department of Energy, and when Plata came to MIT in 2018, Nth Cycle became part of the MIT Industrial Liaison Program’s STEX25 startup accelerator.

“What’s so important about being at a place like MIT is the entrepreneurial ecosystem and the ‘tough tech’ ethos of Cambridge,” Plata explains. “That’s been hugely important to the success of Nth Cycle and one of the reasons we moved the company to the greater Boston area. Being able to access talent and patient capital was key.”

Onshoring metal refining

Plata says one of the proudest moments of her career came last year at the groundbreaking ceremony for Nth Cycle’s first mixed hydroxide (nickel and cobalt) production facility in Ohio. Many of Nth Cycle’s new employees at the facility had previously worked at auto and chemical facilities in the town but are now working for what Nth Cycle calls the first commercial nickel refining facility for scrap in the country.

“O’Connor’s vision of elevating people while elevating the economy is an inspiring standard of practice,” Plata says.

Nth Cycle will own and operate other Oyster systems in a business model O’Connor describes as refining as a service, where customers own the final product. The company is looking to partner with scrap yards and industrial scrap collection facilities as well as manufacturers that generate waste.

Nth Cycle is mostly working to recover metals from batteries today, but it has also used its process to recover cobalt and nickel from spent catalyst material in the oil and gas industry. Moving forward, Nth Cycle hopes to apply its process to the biggest waste sources of them all: mining.

“The world needs more critical minerals like cobalt, nickel, lithium, and copper,” O’Connor says. “The only two places you can get those materials are from recycling and mining, and both of those sources need to be chemically refined. That’s where Nth Cycle comes in. A lot of people have a negative perception of mining, but if you have a technology that can reduce waste and reduce emissions, that’s how you get more mining in regions like the U.S. That’s the impact we want this technology to have in the Western world.”



de MIT News https://ift.tt/BHVRigU

Face-to-face with Es Devlin

Es Devlin, the winner of the 2025 Eugene McDermott Award in the Arts at MIT, creates settings for people to gather — whether it’s a few people in a room or crowds swelling a massive stadium — arenas in which to dissolve one’s individual sense of self into the greater collective. She herself contains multitudes; equally at home with 17th century metaphysical English poet John Donne, 21st century icon of music and fashion Lady Gaga, or Italian theoretical physicist Carlo Rovelli.

In the course of the artist and designer’s three-decade career, Devlin has created an exploded paint interpretation of the U.K. flag for the Closing Ceremony of the 2012 London Olympics, a box of illuminated rainfall for a production of the Crucible, a 65-foot diameter AI-generated poetry pavilion for the World Expo, an indoor forest for the COP26 Climate Conference, a revolving luminous library for over 200,000 in Milan, Beyonce’s Renaissance tour, and two Super Bowl halftime shows. But Devlin also works on a much smaller scale: the human face. Her world-building is rooted in the earliest technologies of reading and drawing: the simple acts of the eye and hand.  

For Congregation in 2024, she made chalk and charcoal drawings of 50 strangers. Before this project, Devlin says, she had most likely drawn around 50 portraits in total over the course of her practice — mostly family or friends, or the occasional covert sketch of a stranger on the subway. But drawing strangers required a different form of attention. “I was looking at another, who often looked different from me in many ways. Their skin pigmentation might be different, the orientation of their nose, eyes, and forehead might be other to what I was used to seeing in the mirror, and I was fraught with anxiety and concern to do them justice, and at pains not to offend,” she recalls. 

As she drew, she warded off the desire to please, feeling her unconscious biases surface, but eventually, in this wordless space, found herself in intense communion. “I gradually became absorbed in each person's eyes. It felt like falling into a well, but knowing I was held by an anchor, that I would be drawn out,” she says, “In each case, I thought, ‘well, this is it. Here we are. This is the answer to everything, the continuity between me and the other.’” She calls each sitter a co-creator of the piece. 

Devlin’s project inspired a series of drawing sessions at MIT, where students, faculty, and staff across the Institute — without any prior drawing experience necessary — were paired with strangers and asked to draw each other in silence for five minutes. In these 11 sessions held over the course of the semester, participants practiced rendering a stranger’s features on the page, and then the sitter spoke and shared their story. There were no guidelines about what to say, or even how to draw — but the final product mattered less than the process, the act of being in another’s presence and looking deeply. 

If pop concerts are the technology to transform private emotional truth into public feeling — the lyrics sung to the bathroom mirror now belted in choruses of thousands — Devlin finds that same stripped-down intimacy in all her works, asking us to bare the most elemental versions of ourselves. 

“We’re in a moment where we’re really having a hard time speaking to one another. We wanted to find a way to take the lessons from the work that Es Devlin has done to practice listening to one another and building connections within this very broad community that we call MIT,” says Sara Brown, an associate professor in the Music and Theater Arts Section who facilitated drawing sessions. The drawings were then displayed in a pop-up group exhibition, MIT Face to Face, where 80 easels were positioned to face the center of the room like a two-dimensional choir, forming a communal portrait of MIT. 

During her residency at MIT, Devlin toured student labs, spoke with students and faculty from theater arts, discussed the creative uses of AI with technologists and curators, and met with neuroscientists. “I had my brain scanned two days ago at very short notice,” she says, “a functioning MRI scan to help me understand more deeply the geography and architecture of my own mind.”  

“The question I get asked most is, ‘How do you retain a sense of self when you are in collaboration with another, especially if it’s another who is celebrated and widely revered?’” she says, “And I found an answer to that question: You have to be prepared to lose yourself. You have to be prepared to sublimate your sense of self, to see through the eyes of another, and through that practice, you will begin to find more deeply who you are.”

She is influenced by the work of philosopher and neuroscientist Iain Gilchrist, who suggests that a society dominated by the mode of attention of the left hemisphere — the part of the brain broadly in charge of language processing and logical thinking — also needs to be balanced by the right hemisphere, which operates nonverbal modes of attention. While the left hemisphere categorizes and separates, the right attends to the universe as an oceanic whole. And it is under the power of the right hemisphere’s mode of attention, Devlin says, that she enters the flow state of drawing, a place outside the confines of language, that enables her to feel a greater sense of unity with the entire cosmos.

Whether it’s drawing a stranger with a pencil and paper, or working with collaborators, Devlin believes the key to self understanding is, paradoxically, losing oneself.

In all her works, she seeks the ecstatic moment when the boundaries between self and world become more porous. In a time of divisiveness, her message is important. “I think it’s really to do with fear of other,” she says, “and I believe that dislodging fear is something that has to be practiced, like learning a new instrument.” What would it be like to regain a greater equilibrium between the modes of attention of both hemispheres of the brain, the sense of distinctness and the cosmic whole at once? “It could be absolutely definitive, and potentially stave off human extinction,” she says, “It’s at that level of urgency.”  

Presented by the Council for the Arts at MIT, the Eugene McDermott Award for the Arts at MIT was first established by Margaret McDermott in honor of her husband, a legacy that is now carried on by their daughter, Mary McDermott Cook. The Eugene McDermott Award plays a unique role at the Institute by bringing the MIT community together to support MIT’s principal arts organizations: the Department of Architecture; the Program in Art, Culture and Technology; the Center for Art, Science and Technology; the List Visual Arts Center; the MIT Museum; and Music and Theater Arts. During her residency at MIT she presented a week of discussions with the MIT community’s students and faculty in theater, architecture, computer science, MIT Museum Studio, and more. She also presented a public artist talk with Museum of Modern Art Senior Curator of Architecture and Design Paola Antonelli that was one of the culminating events of the MIT arts festival, Artfinity. 



de MIT News https://ift.tt/BMovI1i

Summer 2025 reading from MIT

Summer is the perfect time to curl up with a good book — and MIT authors have had much to offer in the past year. The following titles represent some of the books published in the past 12 months by MIT faculty and staff. In addition to links for each book from its publisher, the MIT Libraries has compiled a helpful list of the titles held in its collections.

Looking for more literary works from the MIT community? Enjoy our book lists from 2024, 2023, 2022, and 2021.

Happy reading!

Science

So Very Small: How Humans Discovered the Microcosmos, Defeated Germs — and May Still Lose the War Against Infectious Disease” (Penguin Random House, 2025)
By Thomas Levenson, professor of science writing

For centuries, people in the West, believing themselves to hold God-given dominion over nature, thought too much of humanity and too little of microbes. Nineteenth-century scientists finally made the connection. Life-saving methods to control infections and contain outbreaks soon followed. Next came the antibiotic era in the 1930s. Yet, less than a century later, the promise of that revolution is receding due to years of overuse. Is our self-confidence getting the better of us again?

The Miraculous from the Material: Understanding the Wonders of Nature” (Penguin Random House, 2024)
By Alan Lightman, professor of the practice of humanities

Nature is capable of extraordinary phenomena. Standing in awe of those phenomena, we experience a feeling of connection to the cosmos. For Lightman, just as remarkable is that all of what we see around us — soap bubbles, scarlet ibises, shooting stars — are made out of the same material stuff and obey the same rules and laws. Pairing 36 full-color photos evoking some of nature’s most awe-inspiring phenomena with personal essays, “The Miraculous from the Material” explores the fascinating science underlying the natural world.

Technology and society

The Analytics Edge in Healthcare” (Dynamic Ideas, 2025)
By Dimitris Bertsimas, vice provost for MIT Open Learning, Boeing Leaders for Global Operations Professor of Management, associate dean for business analytics, and professor of operations research; Agni Orfanoudaki, and Holly Wiberg

Analytics is transforming health care operations, empowering medical professionals and administrators to leverage data and models to make better decisions. This book provides a practical introduction to this exciting field. The first part establishes the technical foundations of health care analytics, spanning machine learning and optimization. The second part presents integrated case studies that cover a wide range of clinical specialties and problem types using descriptive, predictive, and prescriptive analytics.

Longevity Hubs: Regional Innovation for Global Aging”  (MIT Press, 2024)
Edited by Joseph F. Coughlin, senior research scientist and MIT AgeLab director, and Luke Yoquinto, MIT AgeLab research associate 

Populations around the world are aging, and older adults’ economic influence stands to grow markedly in future decades. This volume brings together entrepreneurs, researchers, designers, public servants, and others to address the multifaceted concerns of aging societies and to explore the possibility that certain regions will distinguish themselves as longevity hubs: home to disproportionate economic and innovative activity for older populations.

Data, Systems, and Society: Harnessing AI for Societal Good” (Cambridge University Press, 2025)
By Munther Dahleh, the William A. Coolidge Professor of Electrical Engineering and Computer Science and director of the Institute for Data, Systems, and Society (IDSS)

Harnessing the power of data and artificial intelligence (Al) methods to tackle complex societal challenges requires transdisciplinary collaborations across academia, industry, and government. In this book, Dahleh, founder of the MIT Institute for Data, Systems, and Society (IDSS), offers a blueprint for researchers, professionals, and institutions to create approaches to problems of high societal value using innovative, holistic, data-driven methods.

SuperShifts: Transforming How We Live, Learn, and Work in the Age of Intelligence” (Wiley, 2025)
By Ja-Naé Duane, academic research fellow at the MIT Center for Information Systems Research, and Steve Fisher

This book describes how we’re at the end of one 200-year arc and embarking on another. With this new age of intelligence, Duane and Fisher highlight the catalysts for change currently affecting individuals, businesses, and society as a whole. They also provide a model for transformation that utilizes a holistic view of making radical change through three lenses: you as a leader, your organization, and society.

Tech Agnostic: How Technology Became the World’s Most Powerful Religion, and Why It Desperately Needs a Reformation” (MIT Press, 2024)
By Greg Epstein, humanist chaplain

Today’s technology has overtaken religion as the chief influence on 21st-century life and community. In “Tech Agnostic,” Epstein explores what it means to be a critical thinker with respect to this new faith. Encouraging readers to reassert their common humanity beyond the seductive sheen of “tech,” this book argues for tech agnosticism — not worship — as a way of life.

The New Lunar Society: An Enlightenment Guide to the Next Industrial Revolution” (MIT Press, 2025)
By David Mindell, the Dibner Professor of the History of Engineering and Manufacturing and professor of aeronautics and astronautics 

Climate change, global disruption, and labor scarcity are forcing us to rethink the underlying principles of industrial society. In this book, Mindell envisions this new industrialism from the fundamentals, drawing on the 18th century when first principles were formed at the founding of the Industrial Revolution. While outlining the new industrialism, he tells the story of the Lunar Society, a group of engineers, scientists, and industrialists who came together to apply the principles of the Enlightenment to industrial processes.

Output: An Anthology of Computer-Generated Text, 1953–2023” (MIT Press, 2024) 
Edited by Nick Montfort, professor of digital media, and Lillian-Yvonne Bertram

The discussion of computer-generated text has recently reached a fever pitch but largely omits the long history of work in this area — text generation, as it happens, was not invented yesterday in Silicon Valley. This anthology aims to correct that omission by gathering seven decades of English-language texts produced by generation systems and software, long before ChatGPT and Claude.

Education, work, and innovation

Retiring: Creating a Life That Works for You” (Routledge, 2025)
By Lotte Bailyn, the T Wilson Professor of Management, Emerita and professor emerita of work and organization studies; Teresa M. Amabile; Marcy Crary; Douglas T. Hall; and Kathy E. Kram

Whether they’re one of the 73 million baby boomers reaching their full retirement benefit age or zoomers just entering the workforce, at some point most working Americans will retire. The optimal approach to retirement is unique to each person, but this book offers wisdom and anecdotes from more than 120 people and detailed interviews with 14 “stars” regarding their retirement transitions.

Accelerating Innovation: Competitive Advantage through Ecosystem Engagement” (MIT Press, 2025)
By Phil Budden, senior lecturer of technological Innovation, entrepreneurship, and strategic management; and Fiona Murray, associate dean for innovation, the William Porter Professor of Entrepreneurship, and professor of technological innovation, entrepreneurship, and strategic management 

Leaders in large organizations face continuous pressure to innovate, and few possess the internal resources needed to keep up with rapid advances in science and technology. But looking beyond their own organizations, most face a bewildering landscape of external resources. In “Accelerating Innovation,” leaders will find a practical guide to this external landscape. Budden and Murray provide directions for navigating innovation ecosystems — those hotspots worldwide where researchers, entrepreneurs, and investors congregate.

Writing, Thinking, and the Brain: How Neuroscience Can Improve Writing Instruction” (Teachers College Press, 2024)
By Joel R. S. Nazareno, learning science and education outreach specialist at MIT Open Learning; Tracey Tokuhama-Espinosa; and Christopher Rappleye

Writing is the highest form of thinking, as evidenced by neuroimaging that shows how more neural networks are activated simultaneously during writing than during any other cognitive activity. This book will help teachers understand how the brain learns to write by unveiling 15 stages of thinking that underpin the writing process, along with targeted ways to stimulate them to maximize each individual’s writing potential.

Entrepreneurship: Choice and Strategy” (Norton Economics, 2024)
By Erin L. Scott, senior lecturer of technological innovation, entrepreneurship, and strategic management; Scott Stern, the David Sarnoff Professor of Management of Technology and professor of technological innovation, entrepreneurship, and strategic management; and Joshua Gans

Building on more than two decades of academic research with thousands of companies and MIT students, Scott, Stern, and Gans have developed a systematic approach for startup leadership. They detail four key choices entrepreneurs must make, and “four strategic approaches to find and frame opportunities.”

Failure by Design: The California Energy Crisis and the Limits of Market Planning” (University of Chicago, 2024)
By Georg Rilinger, the Fred Kayne Career Development Assistant Professor of Entrepreneurship and assistant professor of technological innovation, entrepreneurship, and strategic management

The California electricity crisis in 2000 caused billions in losses and led to bankruptcy for one of the state’s largest utilities. More than 20 years later, the question remains: Why did the newly created electricity markets fail? In “Failure by Design,” Rilinger explores practical obstacles to market design to offer a new explanation for the crisis — one that moves beyond previous interpretations that have primarily blamed incompetent politicians or corrupt energy sellers.

Culture, humanities, and social sciences

Chasing the Pearl-Manuscript: Speculation, Shapes, Delight” (University of Chicago Press, 2025)
By Arthur Bahr, professor of literature

In this book, Bahr explores the four poems and 12 illustrations of the “Pearl-Manuscript,” the only surviving medieval copy of two of the best-known Middle English poems: “Pearl” and “Sir Gawain and the Green Knight.” He explores how the physical manuscript enhances our perception of the poetry, drawing on recent technological advances that show it to be a more complex piece of material, visual, and textual art than previously understood. By connecting the manuscript’s construction to the text’s intricate language, Bahr suggests new ways to understand the power of poetry.

Taxation and Resentment: Race, Party, and Class in American Tax Attitudes” (Princeton University Press, 2025)
By Andrea Campbell, the Arthur and Ruth Sloan Professor of Political Science

Most Americans want the rich to pay more to fund government, yet favor regressive over progressive taxes. Why this policy-preference gap? In this book, Campbell describes how convoluted tax code confuses the public about who pays and who benefits, so tax preferences do not turn on principles, interests, or even party. Instead, race and racism play large roles, and tax skepticism among Americans of all stripes helps the rich and anti-tax forces undermine progressivity.

Uprooted: How post-WWII Population Transfers Remade Europe” (Cambridge University Press, 2024)
By Volha Charnysh, the Ford Career Development Associate Professor of Political Science

Each year, millions of people are uprooted from their homes by wars, repression, natural disasters, and climate change. In “Uprooted,” Charnysh presents a fresh perspective on the consequences of mass displacement, arguing that accommodating the displaced population can strengthen receiving states and benefit local economies. With rich insights and compelling evidence, the book challenges common assumptions about the costs of forced displacement and cultural diversity and proposes a novel mechanism linking wars to state-building.

Crime, Insecurity, and Community Policing: Experiments on Building Trust” (Cambridge University Press, 2024)
By Fotini Christia, the Ford International Professor of the Social Sciences; Graeme Blair; and Jeremy M. Weinstein

How can societies reduce crime without exacerbating adversarial relationships between the police and citizens? Through field experiments in a variety of political contexts, this book presents the outcome of a major research initiative into the efficacy of community policing. Scholars uncover whether, and under what conditions, this influential strategy for tackling crime and insecurity is effective. With its highly innovative approach to cumulative learning, this writing represents a new frontier in the study of police reform.

Letterlocking: The Hidden History of the Letter” (MIT Press, 2025)
By Jana Dambrogio, the Thomas F. Peterson Conservator at MIT Libraries, and Daniel Starza Smith 

Before the invention of the gummed envelope in the 1830s, how did people secure their private letters? The answer is letterlocking — the ingenious process of securing a letter using a combination of folds, tucks, slits, or adhesives such as sealing wax, so that it becomes its own envelope. In this book, Dambrogio and Starza Smith, experts who have pioneered the field over the last 10 years, tell the fascinating story of letterlocking within epistolary history, drawing on real historical examples from all over the world.

Long-Term Care around the World” (University of Chicago Press, 2025)
Edited by Jonathan Gruber, the Ford Professor of Economics and head of the Department of Economics, and Kathleen McGarry

As formal long-term care becomes unaffordable for seniors in many countries, public systems and unpaid caregivers increasingly bear the burden of supporting the world’s aging population. “Long-Term Care around the World” is a comparative analysis of long-term care in 10 wealthy countries that considers the social costs of both formal and informal care  —which is critical, given that informal unpaid care is estimated to account for one-third of all long-term care spending.

Empty Vessel: The Global Economy in One Barge” (Penguin Random House, 2025)
By Ian Kumekawa, lecturer of history

What do a barracks for British troops in the Falklands War, a floating jail off the Bronx, and temporary housing for VW factory workers in Germany have in common? The Balder Scapa: a single barge that served all three roles. Through this one vessel, Kumekawa illustrates many currents: globalization, the transience of economic activity, and the hazy world of transactions many call “the offshore,” the lightly regulated sphere of economic activity that encourages short-term actions.

The Price of Our Values: The Economic Limits of Moral Life” (University of Chicago Press, 2025)
By David Thesmar, the Franco Modigliani Professor of Financial Economics and professor of finance, and Augustin Landier

Two economists examine the interplay between our desire to be good, the personal costs of being good, and the point at which people abandon goodness due to its costs. Aided by the results of two surveys, they find that the answers to modern moral dilemmas are economic, and often highly predictable. Our values may guide us, but we are also forced to consider economic costs to settle decisions.

Spheres of Injustice: The Ethical Promise of Minority Presence” (MIT Press, 2025)
By Bruno Perreau, the Cynthia L. Reed Professor of French Studies 

How can the rights of minorities be protected in democracies? The question has been front and center in the U.S. since the Supreme Court’s repeal of affirmative action. In Europe too, minority politics are being challenged. The very notion of “minority” is being questioned, while the notion of a “protected class” risks encouraging competition among minorities. In “Spheres of Injustice,” Perreau demonstrates how we can make the fight against discrimination beneficial for all.

Attention, Shoppers! American Retail Capitalism and the Origins of the Amazon Economy” (Princeton University Press, 2025)
By Kathleen Thelen, the Ford Professor of Political Science

This book traces the evolution of U.S. retailing from the late 19th century to today, uncovering the roots of a bitter equilibrium where large low-cost retailers dominate and vast numbers of low-income families now rely on them to make ends meet. Thelen reveals how large discount retailers have successfully exploited a uniquely permissive regulatory landscape to create a shopper’s paradise built on cheap labor.

Routledge Handbook of Space Policy” (Routledge, 2024)
Chapter by Danielle R. Wood, associate professor in the program in media arts and sciences and associate professor in aeronautics and astronautics

In her chapter, “The Expanding Sphere of Human Responsibility for Sustainability on Earth and in Space,” Wood proposes a multifaceted definition of sustainability and explores how the definition can be exercised as humans expand activity in space. Building on the tradition of consensus building on concepts of sustainable development through United Nations initiatives, Wood asserts that sustainability for human activity in space requires consideration of three types of responsibility: economic, social, and environmental.

Victorian Parlour Games: A Modern Host’s Guide to Classic Fun for Everyone” (Chronicle Books, 2024)
By Ned Wolfe, marketing and communications assistant at MIT Libraries

“Victorian Parlour Games” is a beautifully designed and compact hardcover volume full of the classic, often silly, games played in the late 19th century. The Victorians loved fun and played hundreds and hundreds of party games. This endlessly delightful party games book collects some of the very best for your reference and pleasure.

Arts, architecture, planning, and design

Against Reason: Tony Smith, Sculpture, and Other Modernisms” (MIT Press, 2024)
Chapter by Judith Barry, professor in the Art, Culture, and Technology Program, with Kelli Anderson

This collection of essays reveals the depth and complexity of the sculpture of American modernist Tony Smith, placing his multifaceted practice in dialogue with contemporary voices. Barry’s chapter, "New Piece: Elective Geometries," describes the transformation of Smith’s sculpture into the form of a flipbook and centerpiece “pop-up.”

Steina” (MIT Press, 2025)
Edited by Natalie Bell, curator at the MIT List Visual Arts Center

Accompanying the related exhibition at MIT List Visual Arts Center and Buffalo AKG Art Museum, “Steina” brings renewed recognition to Steina (b. 1940, Iceland), tracing her oeuvre from early collaborative works with her partner Woody Vasulka to her independent explorations of optics and a liberated, non-anthropocentric subjectivity.

Jewish Theatrical Resources: A Guide for Theaters Producing Jewish Work” (Alliance for Jewish Theater, 2025)
Chapter by Marissa Friedman, marketing and communications manager in the Art, Culture, and Technology Program; Jenna Clark Embry; Robin Goldberg; Gabrielle Hoyt; Stephanie Kane; Alix Rosenfeld; and Marissa Shadburn

Produced by the Alliance for Jewish Theatre, this guide was created to help non-Jewish theaters produce Jewish plays with authenticity, cultural awareness, and care. Friedman contributes a chapter on dramaturgy, exploring how the primary role of a dramaturg is to support a playwright and production team in articulating their artistic vision, and setting forth an ideal model for the dramaturgy of a Jewish play, with both a theatrical dramaturg and a Jewish dramaturg.

Play It Again, Sam: Repetition in the Arts” (MIT Press, 2025)
By Samuel Jay Keyser, the Peter de Florez emeritus professor of linguistics

Leonard Bernstein, in his famous Norton Lectures, extolled repetition, saying that it gave poetry its musical qualities and that music theorists’ refusal to take it seriously did so at their peril. “Play It Again, Sam” takes Bernstein seriously. In this book, Keyser explores why we enjoy works of poetry, music, and painting, and how repetition plays a central part in the pleasure.

The Moving Image: A User’s Manual” (MIT Press, 2025)
By Peter B. Kaufman, associate director of development at MIT Open Learning

Video is today’s most popular information medium. Two-thirds of the world’s internet traffic is video. Americans get their news and information more often from screens and speakers than through any other means. “The Moving Image” is the first authoritative account of how we have arrived here, together with the first definitive manual to help writers, educators, and publishers use video more effectively.

Beyond Ruins: Reimagining Modernism” (ArchiTangle, 2024)
Edited by Raafat Majzoub SM ’17, visiting lecturer at the Art, Culture, and Technology Program; and Nicolas Fayad

This book explores the renovation of modern architecture in the Global South as a tool for self-determination and community-building. Focusing on the Oscar Niemeyer Guest House in Tripoli, Lebanon, Majzoub and Fayad examine heritage as a political and material process. Through case studies, visual essays, and conversations with architects, artists, and theorists, the book addresses challenges of preservation, gaps in archiving, and the need for new forms of architectural practice.

The Equitably Resilient City: Solidarities and Struggles in the Face of Climate Crisis” (MIT Press, 2024)
By Lawrence J. Vale, the Ford Professor of Urban Design and Planning and associate dean of the MIT School of Architecture and Planning; and Zachary B. Lamb

Too often the places most vulnerable to climate change are those that are home to people with the fewest economic and political resources. And while some leaders are starting to take action to reduce climate risks, many early adaptation schemes have actually made preexisting inequalities worse. In this book, Vale and Lamb ask how cities can adapt to climate change and other threats while also doing right by disadvantaged residents.

Novel and biography

The Novice of Thanatos: An Epic Dark Fantasy of Horror, Death, and Necromancy” (Satirrell Publishing, 2025)
By Scott Austin Tirrell, director of administration and finance at the Art, Culture, and Technology Program

A fantasy novel that follows 11-year-old Mishal, a gifted yet troubled boy inducted into the secretive Order of Thanatos. Set in the grim and mystic realm of Lucardia, the story is framed as a first-person memoir chronicling Mishal’s initiation as a novice psychopomp — one who guides the dead across the Threshold into the afterlife. As Mishal navigates the Order’s rigid hierarchy, academic rigor, and spiritual mysteries, he begins to uncover unsettling truths about death, the soul, and the hidden agendas of those in power. Haunted by a spirit he cannot abandon and burdened by a forbidden artifact, Mishal must decide whom to trust and what to believe as his abilities grow — and as the line between duty and damnation begins to blur.

For young readers

I Love You Bigger Than Everything That’s Big” (Stillwater River Publications, 2024)
By Lindsay Bartholomew, exhibit content and experience developer at MIT Museum, and illustrated by Sequoia Bostick

How much can you love someone? Higher than you can reach? Longer than a river? Bigger than the sky? The real answer — bigger than everything that’s big!

A Century for Caroline” (Denene Millner Books / Simon and Schuster, 2025)
By Kaija Langley, director of development at MIT Libraries, and illustrated by TeMika Grooms

A great-grandma imparts the wisdom gained over her 100 years to an eager little girl in this tender picture book tribute to family and living a long, purposeful, beautiful life.

All the Rocks We Love” (Penguin Random House, 2024)
By Taylor Perron, the Cecil and Ida Green Professor of Earth, Atmospheric and Planetary Sciences, and Lisa Varchol Perron, and illustrated by David Scheirer

It’s no secret that children love rocks: They appear in jacket pockets, on windowsills, in the car, in their hiding places, and most often, in little grips. This book is an appreciation of rocks’ versatility and appeal, paired with the presentation of real types of rocks and their play-worthy attributes. 



de MIT News https://ift.tt/eCgDETo

Evelyn Wang: A new energy source at MIT

Evelyn Wang ’00 knows a few things about engineering solutions to hard problems. After all, she invented a way to pull water out of thin air.

Now, Wang is applying that problem-solving experience — and a deep, enduring sense of optimism — toward the critical issue of climate change, to strengthen the American energy economy and ensure resilience for all.

Wang, a mechanical engineering professor by trade, began work this spring as MIT’s first vice president for energy and climate, overseeing the Institute’s expanding work on climate change. That means broadening the Institute’s already-wide research portfolio, scaling up existing innovations, seeking new breakthroughs, and channeling campus community input to drive work forward.

“MIT has the potential to do so much, when we know that climate, energy, and resilience are paramount to events happening around us every day,” says Wang, who is also the Ford Professor of Engineering at MIT. “There’s no better place than MIT to come up with the transformational solutions that can help shape our world.”

That also means developing partnerships with corporate allies, startups, government, communities, and other organizations. Tackling climate change, Wang says, “requires a lot of partnerships. It’s not an MIT-only endeavor. We’re going to have to collaborate with other institutions and think about where industry can help us deploy and scale so the impact can be greater.”

She adds: “The more partnerships we have, the more understanding we have of the best pathways to make progress in difficult areas.”

From MIT to ARPA-E

An MIT faculty member since 2007, Wang leads the Device Research Lab. Along with collaborators, she identifies new materials and optimizations based on heat and mass transport processes that unlock the creation of leading-edge innovations. Her development of the device that extracts water from even very dry air led Foreign Policy Magazine to name her its 2017 Global ReThinker, and she won the 2018 Eighth Prince Sultan bin Abdulaziz International Prize for Water.

Her research also extends to other areas such as energy and desalination research. In 2016, Wang and several colleagues announced a device based on nanophotonic crystals with the potential to double the amount of power produced by a given area of solar panels, which led to one of her graduate researchers on the project to co-found the startup Antora Energy. More recently, Wang and colleagues developed an aerogel that improves window insulation, now being commercialized through her former graduate students in a startup, AeroShield.

Wang also spent two years recently as director of the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E), which supports early-stage R&D on energy generation, storage, and use.  Returning to MIT, she began her work as vice president for energy and climate in April, engaging with researchers, holding community workshops, and planning to build partnerships.

“I’ve been energized coming back to the Institute, given the talented students, the faculty, the staff. It’s invigorating to be back in this community,” Wang says. “People are passionate, excited, and mission-driven, and that’s the energy we need to make a big impact in the world.”

Wang is also working to help align the Institute’s many existing climate efforts. This includes the Climate Project at MIT, an Institute-wide presidential initiative announced in 2024, which aims to accelerate and scale up climate solutions while generating new tools and policy proposals. All told, about 300 MIT faculty conduct research related to climate issues in one form or another.

“The fact that there are so many faculty working on climate is astounding,” Wang says. “Everyone’s doing exciting work, but how can we leverage our unique strengths to create something bigger than the sum of its parts? That’s what I’m working toward. We’ve spun out so many technologies. How do we do more of that? How do we do that faster, and in a way so the world will feel the impact?”

A deep connection to campus — and strong sense of optimism

Understanding MIT is one of Wang’s strengths, given that she has spent over two decades at the Institute.

Wang earned her undergraduate degree from MIT in mechanical engineering, and her MS and PhD in mechanical engineering from Stanford University. She has held several chaired faculty positions at MIT. In 2008, Wang was named the Esther and Harold E. Edgerton Assistant Professor; in 2015, she was named the Gail E. Kendall Professor; and in 2021, she became the Ford Professor of Engineering. Wang served as head of the Department of Mechanical Engineering from 2018 through 2022.

As it happens, Wang’s parents, Kang and Edith, met as graduate students at the Institute. Her father, an electrical engineer, became a professor at the University of California at Los Angeles. Wang also met her husband at MIT, and both of her brothers graduated from the Institute.

Along with her deep institutional knowledge, administrative experience, and track record as an innovator, Wang is bringing several other things to her new role as vice president for climate: a sense of urgency about the issue, coupled with a continual sense of optimism that innovators can meet society’s needs.

“I think optimism can make a difference, and is great to have in the midst of collective challenge,” Wang says. “We’re such a mission-driven university, and people come here to solve real-world problems.”

That hopeful approach is why Wang describes the work as not only as a challenge but also a generational opportunity. “We have the chance to design the world we want,” she says, “one that’s cleaner, more sustainable and more resilient. This future is ours to shape and build together.”

Wang thinks MIT contains many examples of world-shaping progress, She cites MIT’s announcement this month of the creation of the Schmidt Laboratory for Materials in Nuclear Technologies, at the MIT Plasma Science and Fusion center, to conduct research on next-generation materials that could help enable the construction of fusion power plants. Another example Wang references is MIT research earlier this year on developing clean ammonia, a way to make the world’s most widely-produced chemical with drastically-reduced greenhouse gas emissions.

“Those solutions could be breakthroughs,” Wang says. “Those are the kinds of things that give us optimism. There’s still a lot of research to be done, but it suggests the potential of what our world can be.”

Optimism: There’s that word again.

“Optimism is the only way to go,” Wang says. “Yes, the world is challenged. But this is where MIT’s strengths — in research, innovation, and education — can bring optimism to the table.”



de MIT News https://ift.tt/pDX6cub

miércoles, 25 de junio de 2025

Merging AI and underwater photography to reveal hidden ocean worlds

In the Northeastern United States, the Gulf of Maine represents one of the most biologically diverse marine ecosystems on the planet — home to whales, sharks, jellyfish, herring, plankton, and hundreds of other species. But even as this ecosystem supports rich biodiversity, it is undergoing rapid environmental change. The Gulf of Maine is warming faster than 99 percent of the world’s oceans, with consequences that are still unfolding.

A new research initiative developing at MIT Sea Grant, called LOBSTgER — short for Learning Oceanic Bioecological Systems Through Generative Representations — brings together artificial intelligence and underwater photography to document the ocean life left vulnerable to these changes and share them with the public in new visual ways. Co-led by underwater photographer and visiting artist at MIT Sea Grant Keith Ellenbogen and MIT mechanical engineering PhD student Andreas Mentzelopoulos, the project explores how generative AI can expand scientific storytelling by building on field-based photographic data.

Just as the 19th-century camera transformed our ability to document and reveal the natural world — capturing life with unprecedented detail and bringing distant or hidden environments into view — generative AI marks a new frontier in visual storytelling. Like early photography, AI opens a creative and conceptual space, challenging how we define authenticity and how we communicate scientific and artistic perspectives. 

In the LOBSTgER project, generative models are trained exclusively on a curated library of Ellenbogen’s original underwater photographs — each image crafted with artistic intent, technical precision, accurate species identification, and clear geographic context. By building a high-quality dataset grounded in real-world observations, the project ensures that the resulting imagery maintains both visual integrity and ecological relevance. In addition, LOBSTgER’s models are built using custom code developed by Mentzelopoulos to protect the process and outputs from any potential biases from external data or models. LOBSTgER’s generative AI builds upon real photography, expanding the researchers’ visual vocabulary to deepen the public’s connection to the natural world.

At its heart, LOBSTgER operates at the intersection of art, science, and technology. The project draws from the visual language of photography, the observational rigor of marine science, and the computational power of generative AI. By uniting these disciplines, the team is not only developing new ways to visualize ocean life — they are also reimagining how environmental stories can be told. This integrative approach makes LOBSTgER both a research tool and a creative experiment — one that reflects MIT’s long-standing tradition of interdisciplinary innovation.

Underwater photography in New England’s coastal waters is notoriously difficult. Limited visibility, swirling sediment, bubbles, and the unpredictable movement of marine life all pose constant challenges. For the past several years, Ellenbogen has navigated these challenges and is building a comprehensive record of the region’s biodiversity through the project, Space to Sea: Visualizing New England’s Ocean Wilderness. This large dataset of underwater images provides the foundation for training LOBSTgER’s generative AI models. The images span diverse angles, lighting conditions, and animal behaviors, resulting in a visual archive that is both artistically striking and biologically accurate.

LOBSTgER’s custom diffusion models are trained to replicate not only the biodiversity Ellenbogen documents, but also the artistic style he uses to capture it. By learning from thousands of real underwater images, the models internalize fine-grained details such as natural lighting gradients, species-specific coloration, and even the atmospheric texture created by suspended particles and refracted sunlight. The result is imagery that not only appears visually accurate, but also feels immersive and moving.

The models can both generate new, synthetic, but scientifically accurate images unconditionally (i.e., requiring no user input/guidance), and enhance real photographs conditionally (i.e., image-to-image generation). By integrating AI into the photographic workflow, Ellenbogen will be able to use these tools to recover detail in turbid water, adjust lighting to emphasize key subjects, or even simulate scenes that would be nearly impossible to capture in the field. The team also believes this approach may benefit other underwater photographers and image editors facing similar challenges. This hybrid method is designed to accelerate the curation process and enable storytellers to construct a more complete and coherent visual narrative of life beneath the surface.

In one key series, Ellenbogen captured high-resolution images of lion’s mane jellyfish, blue sharks, American lobsters, and ocean sunfish (Mola mola) while free diving in coastal waters. “Getting a high-quality dataset is not easy,” Ellenbogen says. “It requires multiple dives, missed opportunities, and unpredictable conditions. But these challenges are part of what makes underwater documentation both difficult and rewarding.”

Mentzelopoulos has developed original code to train a family of latent diffusion models for LOBSTgER grounded on Ellenbogen’s images. Developing such models requires a high level of technical expertise, and training models from scratch is a complex process demanding hundreds of hours of computation and meticulous hyperparameter tuning.

The project reflects a parallel process: field documentation through photography and model development through iterative training. Ellenbogen works in the field, capturing rare and fleeting encounters with marine animals; Mentzelopoulos works in the lab, translating those moments into machine-learning contexts that can extend and reinterpret the visual language of the ocean.

“The goal isn’t to replace photography,” Mentzelopoulos says. “It’s to build on and complement it — making the invisible visible, and helping people see environmental complexity in a way that resonates both emotionally and intellectually. Our models aim to capture not just biological realism, but the emotional charge that can drive real-world engagement and action.”

LOBSTgER points to a hybrid future that merges direct observation with technological interpretation. The team’s long-term goal is to develop a comprehensive model that can visualize a wide range of species found in the Gulf of Maine and, eventually, apply similar methods to marine ecosystems around the world.

The researchers suggest that photography and generative AI form a continuum, rather than a conflict. Photography captures what is — the texture, light, and animal behavior during actual encounters — while AI extends that vision beyond what is seen, toward what could be understood, inferred, or imagined based on scientific data and artistic vision. Together, they offer a powerful framework for communicating science through image-making.

In a region where ecosystems are changing rapidly, the act of visualizing becomes more than just documentation. It becomes a tool for awareness, engagement, and, ultimately, conservation. LOBSTgER is still in its infancy, and the team looks forward to sharing more discoveries, images, and insights as the project evolves.

Answer from the lead image: The left image was generated using using LOBSTgER’s unconditional models and the right image is real.

For more information, contact Keith Ellenbogen and Andreas Mentzelopoulos.



de MIT News https://ift.tt/4zhSdUF

martes, 24 de junio de 2025

Accelerating hardware development to improve national security and innovation

Modern fighter jets contain hundreds or even thousands of sensors. Some of those sensors collect data every second, others every nanosecond. For the engineering teams building and testing those jets, all those data points are hugely valuable — if they can make sense of them.

Nominal is an advanced software platform made for engineers building complex systems ranging from fighter jets to nuclear reactors, satellites, rockets, and robots. Nominal’s flagship product, Nominal Core, helps teams organize, visualize, and securely share data from tests and operations. The company’s other product, Nominal Connect, helps engineers build custom applications for automating and syncing their hardware systems.

“It’s a very technically challenging problem to take the types of data that our customers are generating and get them into a single place where people can collaborate and get insights,” says Nominal co-founder Jason Hoch ’13. “It’s hard because you’re dealing with a lot of different data sources, and you want to be able to correlate those sources and apply mathematical formulas. We do that automatically.”

Hoch started Nominal with Cameron McCord ’13, SM ’14 and Bryce Strauss after the founders had to work with generic data tools or build their own solutions at places like Lockheed Martin and Anduril. Today, Nominal is working with organizations in aerospace, defense, robotics, manufacturing, and energy to accelerate the development of products critical for applications in U.S. national security and beyond.

“We built Nominal to take the best innovations in software and data technology and tailor them to the workflows that engineers go through when building and testing hardware systems,” McCord says. “We want to be the data and software backbone across all of these types of organizations.”

Accelerating hardware development

Hoch and McCord met during their first week at MIT and joined the same fraternity as undergraduates. Hock double majored in mathematics and computer science and engineering, and McCord participated in the Navy Reserve Officers’ Training Corps (NROTC) while majoring in physics and nuclear science and engineering.

“MIT let me flex my technical skills, but I was also interested in the broader implications of technology and national security,” McCord says. “It was an interesting balance where I was learning the hardcore engineering skills, but always having a wider aperture to understand how the technology I was learning about was going to impact the world.”

Following MIT, McCord spent eight years in the Navy before working at the defense technology company Anduril, where he was charged with building the software systems to test different products. Hoch also worked at the intelligence and defense-oriented software company Palantir.

McCord met Strauss, who had worked as an engineer at Lockheed Martin, while the two were at Harvard Business School. The eventual co-founders realized they had each struggled with software during complex hardware development projects, and set out to build the tools they wished they’d had.

At the heart of Nominal’s platform is a unified database that can connect and organize hundreds of data sources in real-time. Nominal’s system allows engineers to search through or visualize that information, helping them spot trends, catch critical events, and investigate anomalies — what Nominal’s team describes as learning the rules governing complex systems.

“We’re trying to get answers to engineers so they understand what’s happening and can keep projects moving forward,” says Strauss. “Testing and validating these systems are fundamental bottlenecks for hardware progress. Our platform helps engineers answer questions like, ‘When we made a 30-degree turn at 16,000 feet, what happened to the engine’s temperature, and how does that compare to what happened yesterday?’”

By automating tasks like data stitching and visualization, Nominal’s platform helps accelerate post-test analysis and development processes for complex systems. And because the platform is cloud-hosted, engineers can easily share visualizations and other dynamic assets with members of their team as opposed to making static reports, allowing more people in an organization to interact directly with the data.

From satellites to drones, robots to rockets

Nominal recently announced a $75 million Series B funding round, led by Sequoia Capital, to accelerate their growth.

“We’ll use the funds to accelerate product roadmaps for our existing products, launch new products across the hardware test stack, and more than double our team,” says McCord.

Today, aerospace customers are using Nominal’s platform to monitor their assets in orbit. Manufacturers are using Nominal to make sure their components work as expected before they’re integrated into larger systems. Nuclear fusion companies are using Nominal to understand when their parts might fail due to heat.

“The products we’ve built are transferrable,” Hoch says. “It doesn’t matter if you’re building a nuclear fusion reactor or a satellite, those teams can benefit from the Nominal tool chain.”

Ultimately the founders believe the platform helps create better products by enabling a data-driven, iterative design process more commonly seen in the software development industry.

“The concept of continuous integration and development in software revolutionized the industry 20 years ago. Before that, it was common to build software in large, slow batches – developing for months, then testing and releasing all at once,” Strauss explains. “We’re bringing continuous testing to hardware. It’s about constantly creating that feedback loop to improve performance. It’s a new paradigm for how hardware is built. We’ve seen companies like SpaceX do this well to move faster and outpace the competition. Now, that approach is available to everyone.”



de MIT News https://ift.tt/BU1FeRs