jueves, 28 de noviembre de 2019

Toward more efficient computing, with magnetic waves

MIT researchers have devised a novel circuit design that enables precise control of computing with magnetic waves — with no electricity needed. The advance takes a step toward practical magnetic-based devices, which have the potential to compute far more efficiently than electronics.

Classical computers rely on massive amounts of electricity for computing and data storage, and generate a lot of wasted heat. In search of more efficient alternatives, researchers have started designing magnetic-based “spintronic” devices, which use relatively little electricity and generate practically no heat.

Spintronic devices leverage the “spin wave” — a quantum property of electrons — in magnetic materials with a lattice structure. This approach involves modulating the spin wave properties to produce some measurable output that can be correlated to computation. Until now, modulating spin waves has required injected electrical currents using bulky components that can cause signal noise and effectively negate any inherent performance gains.

The MIT researchers developed a circuit architecture that uses only a nanometer-wide domain wall in layered nanofilms of magnetic material to modulate a passing spin wave, without any extra components or electrical current. In turn, the spin wave can be tuned to control the location of the wall, as needed. This provides precise control of two changing spin wave states, which correspond to the 1s and 0s used in classical computing.

In the future, pairs of spin waves could be fed into the circuit through dual channels, modulated for different properties, and combined to generate some measurable quantum interference — similar to how photon wave interference is used for quantum computing. Researchers hypothesize that such interference-based spintronic devices, like quantum computers, could execute highly complex tasks that conventional computers struggle with.

“People are beginning to look for computing beyond silicon. Wave computing is a promising alternative,” says Luqiao Liu, a professor in the Department of Electrical Engineering and Computer Science (EECS) and principal investigator of the Spintronic Material and Device Group in the Research Laboratory of Electronics. “By using this narrow domain wall, we can modulate the spin wave and create these two separate states, without any real energy costs. We just rely on spin waves and intrinsic magnetic material.”

Joining Liu on the paper are Jiahao Han, Pengxiang Zhang, and Justin T. Hou, three graduate students in the Spintronic Material and Device Group; and EECS postdoc Saima A. Siddiqui.

Flipping magnons

Spin waves are ripples of energy with small wavelengths. Chunks of the spin wave, which are essentially the collective spin of many electrons, are called magnons. While magnons are not true particles, like individual electrons, they can be measured similarly for computing applications.

In their work, the researchers utilized a customized “magnetic domain wall,” a nanometer-sized barrier between two neighboring magnetic structures. They layered a pattern of cobalt/nickel nanofilms — each a few atoms thick — with certain desirable magnetic properties that can handle a high volume of spin waves. Then they placed the wall in the middle of a magnetic material with a special lattice structure, and incorporated the system into a circuit.

On one side of the circuit, the researchers excited constant spin waves in the material. As the wave passes through the wall, its magnons immediately spin in the opposite direction: Magnons in the first region spin north, while those in the second region — past the wall — spin south. This causes the dramatic shift in the wave’s phase (angle) and slight decrease in magnitude (power).

In experiments, the researchers placed a separate antenna on the opposite side of the circuit, that detects and transmits an output signal. Results indicated that, at its output state, the phase of the input wave flipped 180 degrees. The wave’s magnitude — measured from highest to lowest peak — had also decreased by a significant amount.

Adding some torque

Then, the researchers discovered a mutual interaction between spin wave and domain wall that enabled them to efficiently toggle between two states. Without the domain wall, the circuit would be uniformly magnetized; with the domain wall, the circuit has a split, modulated wave.

By controlling the spin wave, they found they could control the position of the domain wall. This relies on a phenomenon called, “spin-transfer torque,” which is when spinning electrons essentially jolt a magnetic material to flip its magnetic orientation.

In the researchers’ work, they boosted the power of injected spin waves to induce a certain spin of the magnons. This actually draws the wall toward the boosted wave source. In doing so, the wall gets jammed under the antenna — effectively making it unable to modulate waves and ensuring uniform magnetization in this state.

Using a special magnetic microscope, they showed that this method causes a micrometer-size shift in the wall, which is enough to position it anywhere along the material block. Notably, the mechanism of magnon spin-transfer torque was proposed, but not demonstrated, a few years ago. “There was good reason to think this would happen,” Liu says. “But our experiments prove what will actually occur under these conditions.”

The whole circuit is like a water pipe, Liu says. The valve (domain wall) controls how the water (spin wave) flows through the pipe (material). “But you can also imagine making water pressure so high, it breaks the valve off and pushes it downstream,” Liu says. “If we apply a strong enough spin wave, we can move the position of domain wall — except it moves slightly upstream, not downstream.”

Such innovations could enable practical wave-based computing for specific tasks, such as the signal-processing technique, called “fast Fourier transform.” Next, the researchers hope to build a working wave circuit that can execute basic computations. Among other things, they have to optimize materials, reduce potential signal noise, and further study how fast they can switch between states by moving around the domain wall. “That’s next on our to-do list,” Liu says.



de MIT News https://ift.tt/37JVPAt

miércoles, 27 de noviembre de 2019

Transformation by design

Consider the range of possibilities from 4D printed materials that transform underwater, or fibers that snap into a particular shape when they are cut out of a flat panel, or coaxing shifting sands in the ocean into building artificial islands, and you will have some idea of the breadth of research that Skylar Tibbits, MIT associate professor of design research in the Department of Architecture, pursues.

Tibbits’ Self-Assembly Lab at MIT demonstrated, through studies in a water tank simulating ocean conditions, that specific geometries could generate self-organizing sand bars and beaches. To test this approach in the real world, the lab is currently conducting field experiments based on their lab work with a group called Invena in the Maldives — a chain of islands, or atolls, in the Indian Ocean, many of which are at risk of erosion and, at worst, submersion from rising sea levels.

Wind and waves naturally build up sand bars in the ocean environment and just as naturally sweep them away. The idea of the Maldives project is to harness the power of waves and their interaction with specifically placed underwater bladders to promote sand accumulation where it is most needed to protect shorefronts from flooding, rather than building land-based barriers that are inevitably worn away or overwhelmed.

Sand alone may not ensure permanency to these “directed” islands, so the Self-Assembly Lab hopes to incorporate vegetation into future efforts, drawing on classic motifs of landscape engineering such as mangrove forests that anchor an ecosystem. “In the bladders underwater, you could seed them with vegetation to make them stay,” Tibbits said in a presentation to the MIT Industrial Liaison Program’s Research and Development Conference on Nov. 13.

Tibbits also discussed his collaborations on “4D printing,” objects that are formed by multi-material 3D printing but designed to transform over time, whether that transformation is activated by mechanical stress, water absorption, light exposure, or some other mechanism. One method to create adaptable materials is by pairing two different materials that expand or contract at different rates. In a collaboration with Stratasys and Autodesk, he designed a single strand of material that, as soon as it is immersed in water, folds itself into the letters M - I - T.

Working with BMW, the Self-Assembly Lab designed silicone cushion clusters that are 3D-printed in liquid and can be inflated cell by cell, thus changing their overall shape, stiffness, or movement. This material could be the basis for more comfortable seating that adjusts to individual passengers.

The Self-Assembly Lab is conducting active textile research in collaboration with Ministry of Supply, fiber extrusion specialty firm Hills Inc., the University of Maine, and Iowa State University. So far, the group has produced sweater yarns that can be heated to conform to an individual wearer’s body shape, with a long-term goal of producing climate-adaptive textiles. This work is partly funded by Advanced Functional Fabrics of America, and that portion of the research is administered through the Materials Research Laboratory.

The Self-Assembly Lab also developed a method to 3D-print liquid metal into powder that creates fully formed parts that can be lifted out of the powder. The parts are made of a material that can be re-melted to form new parts.

Using carbon-based materials in a project for Airbus, the Self-Assembly Lab developed thin blades that can fold and curl by themselves to control the airflow to the engine. The “programmable” carbon work was carried out with Carbitex LLC, Autodesk, and MIT’s Center for Bits and Atoms.

For a chair project with Biesse and Wood-Skin, the Self-Assembly Lab designed a small table that marries 3D-printed wood fiber panels and pre-stressed textiles. The table can be shipped flat, then jump into several different arrangements because of the flexibility of the textile.

By 3D-printing a stiffer material in a circular pattern onto a flat mesh, for example, the researchers showed that cutting out the circle from the flat plane causes it to snap into a hyperbolic parabola shape. The researchers include MIT computer science Professor Erik Demaine; Christophe Guberan, a visiting product designer from Switzerland; and David Costanza MA ’13, SM ’15.

Tibbits worked with Steelcase to develop a process for 3D printing plastic into liquid for furniture parts, called rapid liquid printing. This process prints within a gel bath to provide support for the printed parts and minimize the effect of gravity. With this printing technique they can print centimeter- to meter-scale parts in minutes to hours with a range of high-quality industrial materials like silicone rubber, polyurethane, and acrylics.

The common theme across all these different projects is Tibbits’ belief that the future of industrial production lies in the transformative power of harnessing smart, programmable materials. “We want to think about what’s coming next and see if we can really lead that,” Tibbits says.



de MIT News https://ift.tt/34qShAV

School of Engineering third quarter 2019 awards

Members of the MIT engineering faculty receive many awards in recognition of their scholarship, service, and overall excellence. Every quarter, the School of Engineering publicly recognizes their achievements by highlighting the honors, prizes, and medals won by faculty working in our academic departments, labs, and centers.

Richard Braatz, of the Department of Chemical Engineering, won the AIChE 2019 Separations Division Innovation Award on Oct. 1.

Michael Carbin, of the Department of Electrical Engineering and Computer Science, won the Best Paper Award at the International Conference on Learning Representations on May 8. He also won the Distinguished Paper Award at the International Conference on Functional Programming on Aug. 20.

Vincent W. S. Chan, of the Department of Electrical Engineering and Computer Science, was elected 2020-21 president of the IEEE Communication Society on Sept. 5.

Victor Chernozhukov, of the Institute for Data, Systems, and Society, was named a fellow of the Institute of Mathematical Statistics on May 15.

Michael Cima, of the Department of Materials Science and Engineering, won the W. David Kingery Award from the American Ceramic Society on Oct. 16.

James Collins, of the Institute for Medical Engineering and Science, won the 2020 Max Delbrück Prize in Biological Physics from the American Physical Society on Sept. 26.

Areg Danagoulian, of the Department of Nuclear Science and Engineering, won the 2019 Radiation Science and Technology Award from the American Nuclear Society on Nov. 17.

Peter Dedon and Eric Alm, of the Department of Biological Engineering, won the NIH Director’s Transformative Research Award on Oct. 1.

Esther Duflo, of the Institute for Data, Systems, and Society, won the Nobel Prize for economics on Oct. 14.

Ruonan Han, of the Department of Electrical Engineering and Computer Science, was named the 2020-22 Distinguished Lecturer by the IEEE Microwave Theory and Technique Society on Sept. 11.

James M. LeBeau, of the Department of Materials Science and Engineering, won the Presidential Early Career Award for Scientists and Engineers on July 2.

Nancy Lynch, of the Department of Electrical Engineering and Computer Science, was given a doctor honoris causa (honorary doctorate) from the Sorbonne University on Sept. 11.

Karthish Manthiram, of the Department of Chemical Engineering, won the 2019 NSF Faculty Early Career Development (CAREER) Award on Nov. 15.

Devavrat Shah, of the Department of Electrical Engineering and Computer Science, won the ACM Sigmetrics Test of Time Paper Award on July 22.

Suvrit Sra, of the Department of Electrical Engineering and Computer Science, won the NSF CAREER Award on July 24.

Anne White, of the Department of Nuclear Science and Engineering, was named a fellow of the American Physical Society on Nov. 17.

Cathy Wu, of the Institute for Data, Systems, and Society, won the Best PhD Dissertation Award first prize from the IEEE Intelligent Transportation Systems Society on Nov. 12.



de MIT News https://ift.tt/2OQhP3Z

Heating by cooling

The field of magnetic fusion research has mysteries to spare. How to confine turbulent plasma fuel in a donut-shaped vacuum chamber, making it hot and dense enough for fusion to take place, has generated questions — and answers — for decades. 

As a graduate student under the direction of Department of Nuclear Science and Engineering Professor Anne White, Pablo Rodriguez-Fernandez PhD ’19 became intrigued by a fusion research mystery that had remained unsolved for 20 years. His novel observations and subsequent modeling helped provide the answer, earning him the Del Favero Prize.

The focus of his thesis is plasma turbulence, and how heat is transported from the hot core to the edge of the plasma in a tokamak. Experiments over 20 years have shown that, in certain circumstances, cooling the edge of the plasma results in the core becoming hotter. 

“When you cool the edge of the plasma by injecting impurities, what every standard theory and intuition would tell you is that a cold pulse propagates in, so that eventually the core temperature will drop as well. But what we observed is that, in certain conditions when we drop the temperature of the edge, the core got hotter. It’s sort of heating by cooling.”

The counterintuitive observation was not supported by any existing theory for plasma behavior. 

“The fact that our theory cannot explain something that happens so often in experiments makes us question those models,” Rodriquez-Fernandez says. “Should we trust them to predict what will happen in future fusion devices?” 

These models were the basis for predicting performance in the Plasma Science and Fusion Center’s Alcator C-Mod tokamak, which is no longer in operation. They are currently used for ITER, the next-generation machine being constructed in France, and SPARC, the tokamak the PSFC is pursuing with Commonwealth Fusion Systems

To solve the mystery, Rodriguez-Fernandez learned complex coding that would allow him to run simulations of the edge-cooling experiments. When he manually cooled the edge in his early simulations, however, his models failed to reproduce the core heating observed in the actual experiments.

Carefully studying data from Alcator C-Mod experiments, Rodriguez-Fernandez realized that the impurities injected to cool the plasma perturb not only the temperature, but every parameter, including the density. 

“We are perturbing the density because we are introducing more particles into the plasma. I was looking at the Alcator C-Mod data and I was seeing all the time these bumps in density. People have been disregarding them forever.”

With new density perturbations to introduce into his simulation, he was able to simulate the core heating that had been observed in so many experiments around the world for more than two decades. These findings became the basis for an article in Physical Review Letters (PRL).

To strengthen his thesis, Rodriguez-Fernandez wanted to use the same model to predict the response to edge cooling in a very different tokamak — DIII-D in San Diego, California. At the time, this tokamak did not have the capability to run such an experiment, but the MIT team, led by Research Scientist Nathan Howard, installed a new laser ablation system for injecting impurities and cold pulses into the machine. The subsequent experiments run on DIII-D showed the predictions to be accurate.

“This was further support that my answer to the mystery and my predictive simulations were correct,” says Rodriguez-Fernandez. “The fact that we can reproduce core heating by edge cooling in a simulation, and for more than one tokamak, means that we can understand the physics behind the phenomenon. And what is more important, it gives us confidence that the models we have for C-Mod and SPARC are not wrong.”

Rodriquez-Fernandez notes the excellent collegial environment at the PSFC, as well as a strong external collaboration network. His collaborators include Gary Staebler at General Atomics, home to DIII-D, who authored the Trapped Gyro-Landau Fluid transport model used for his simulations; Princeton Plasma Physics Laboratory researchers Brian Grierson and Xingqiu Yuan, who are experts at a modeling tool called TRANSP that was invaluable to his work; and Clemente Angioni at the Max-Planck Institute for Plasma Physics in Garching, Germany, whose experiments on the ASDEX Upgrade tokamak supported the findings from the PRL article.

Now a postdoc at the PSFC, Rodriguez-Fernandez devotes half of his time to SPARC and half to DIII-D and ASDEX Upgrade. With all these projects, he is using the simulations from his PhD thesis to develop techniques for predicting and optimizing tokamak performance. 

The postdoc admits that the timing of his thesis could not have been better, just as the SPARC project was ramping up. He quickly joined the team that is designing the device and working on the physics basis. 

As part of the Dec. 5 ceremony where Rodriguez Fernandez will receive the Del Favero Thesis Prize, he will discuss his how his thesis research is connected to his current work on predicting SPARC performance. Established in 2014 with a generous gift from alum James Del Favero SM ’84, the prize is awarded annually to a PhD graduate in NSE whose thesis is judged to have made the most innovative advance in the field of nuclear science and engineering. 

“It’s very exciting,” he says. “The SPARC project really drives me. I see a future here for me, and for fusion.” 

This research is supported by the U.S. Department of Energy Office of Fusion Energy Sciences.



de MIT News https://ift.tt/2XRZKXh

martes, 26 de noviembre de 2019

First-years learn fundamental principles by creating

Many first-year students arriving on campus each year share a driving force that brought them to MIT — a passion for making. Whether it’s tinkering with robots, building motors, or designing devices, they are eager to create something tangible during their time at MIT. Typically, an engineering curriculum starts by introducing key concepts and fundamentals, delaying the act of creation until later in the undergraduate experience.

In class 2.00a (Fundamentals of Engineering Design: Explore Space, Sea and Earth) first-year students are tasked with designing and building their own machine so they can see first-hand how the fundamentals they are learning apply to real-world scenarios.

“A lot of students come to MIT motivated to actually creating something, but they might have to wait until junior or senior year in some cases,” explains Daniel Frey, professor of mechanical engineering. “I want to give them a chance to experience what it’s like to build and create in their first year.”

The course introduces students to key principles and themes in design and engineering. Students get a crash course in MATLAB and CAD programming like SolidWorks. They learn the fundamental principles that govern structures, controls, and mechanics. By the third week of the semester, they are divided into teams that work together to conceptualize, design, and build a machine.

“This class really forces you to dive into the deep-end of the pool and see what you can make,” says Jason Ramirez, a current sophomore studying mechanical engineering who took 2.00a last spring.

Each year, the item students are tasked with building changes. Every project has hinged upon one central theme: exploration. The subtitle for Course 2.00a is, after all, “Explore Space, Sea and Earth.”

According to Ramirez, this theme of exploring is central to mechanical engineering. “I think that mechanical engineering in and of itself is about exploring — mechanical engineers like asking questions and trying to find solutions to problems,” he says.

In the past, projects included assessing the stability of a ship, using remote controlled aircrafts and robotic harvesters to clear watermilfoil growth in a lake, and searching for the existence of life on one of Jupiter’s moons. 

On the surface, the theme of this year’s projects was quite simple. Students were charged with building something with the theme of "flying." The resulting projects, however, were anything but simple. “This particular year everyone was swinging for the fences. They were all really trying to do something ambitious,” recalls Frey.

This year’s projects included both a "butterfly plane" and a bird-shaped plane, complete with flapping wings. While these ambitious designs gave students experience in making, they also introduced them to something nearly every engineer experiences throughout their career: failure.

While most design courses taken later in a students’ academic career have the end-goal of a successful product, Frey and his teaching team see value in giving first-year students the room to fail.

“I think early enough in the sequence of design courses a student takes, there should be the option for students to go out on a limb, tackle a particularly hard project, and give it the ‘old college try,’” Frey says.

Ramirez’s team met failure a few times throughout the design process. “We definitely failed a lot, but I think that there is a lot of learning in that,” he says.

One of the many things the project instills in students is how to work with fellow students to achieve a goal. As student teams worked together on refining their designs, Frey and the staff at the MIT International Design Center helped guide students’ visions and assist in the operation of machinery.

Along with other first-year courses 2.00 (Introduction to Design) and 2.00b (Toy Product Design), the class is meant to give first-year students a taste of what studying mechanical engineering at MIT will be like.

“The classes 2.00, 2.00a, and 2.00b are like an advertisement, not just for the Department of Mechanical Engineering, but for the particular way we want students to learn which really embodies MIT’s motto ‘mens et manus,’” adds Frey.

Last spring, Naomi Michael entered the class unsure of what major she would declare at the end of the year. For her, 2.00a tipped the scales toward mechanical engineering.

“The class gave me a good framework for thinking about the rest of Course 2,” says Michael, who is now a sophomore studying mechanical engineering. “2.00a does a good job of giving you a foundation across a lot of different subjects you’ll encounter within mechanical engineering including statics, MATLAB, and CAD. While these fundamentals will be covered in greater depth in later classes, it’s nice to have some familiarity with what they are and what they can do.” 

Like Michael, this insight into the topics that students will learn during four years of studying mechanical engineering helped strengthen Ramirez’s own decision to declare Course 2. “2.00a has shown me all the fun things mechanical engineering has to offer in the next four years,” he explains.

Course 2.00a has also armed Ramirez with a new perspective on how to approach the rest of his time at MIT. “The class showed me that MIT isn’t just about staying in your room working on p-sets at your desk,” he says. “You can get out, explore, and work on projects you actually care about.”



de MIT News https://ift.tt/2pZfOKA

Designing humanity’s future in space

How will dancers perform in space? How will scientists do lab experiments without work tables? How will artists pursue crafting in microgravity? How can exercise, gastronomy, research, and other uniquely human endeavors be reimagined for the unique environment of space? These are the questions that drove the 14 projects aboard the MIT Media Lab Space Exploration Initiative’s second parabolic research flight.

Just past the 50th anniversary of the Apollo moon landing, humanity’s life in space isn’t so very far away. Virgin Galactic just opened its spaceport with the goal of launching space tourists into orbit within months, not years; Blue Origin’s New Shepard rocket is gearing up to carry its first human cargo to the edge of space, with New Glenn and a moon mission not far behind. We are nearing a future where trained, professional astronauts aren’t the only people who will regularly leave Earth. The new Space Age will reach beyond the technical and scientific achievements of getting people into space and keeping them alive there; the next frontier is bringing our creativity, our values, our personal pursuits and hobbies with us, and letting them evolve into a new culture unique to off-planet life. 

But unlike the world of Star Trek, there’s no artificial gravity capability in sight. Any time spent in space will, for the foreseeable future, mean life without weight, and without the rules of gravity that govern every aspect of life on the ground. Through its annual parabolic flight charter with the ZERO-G Research Program, the Space Exploration Initiative (SEI) is actively anticipating and solving for the challenges of microgravity.

Space for everyone

SEI’s first zero-gravity flight, in 2017, set a high bar for the caliber of the projects, but it was also a learning experience in doing research in 20-second bursts of microgravity. In preparation for an annual research flight, SEI founder and lead Ariel Ekblaw organized MIT's first graduate course for parabolic flights (Prototyping Our Sci-Fi Space Future: Zero Gravity Flight Class) with the goal of preparing researchers for the realities of parabolic flights, from the rigors of the preflight test readiness review inspections to project hardware considerations and mid-flight adjustments.

The class also served to take some of the intimidation factor out of the prospect of space research and focused on democratizing access to microgravity testbed environments. 

“The addition of the course helped us build bridges across other departments at MIT and take the time to document and open-source our mentorship process for robust, creative, and rigorous experiments,” says Ekblaw.

SEI’s mission of democratizing access to space is broad: It extends to actively recruiting researchers, artists, and designers, whose work isn’t usually associated with space, as well as ensuring that the traditional engineering and hard sciences of space research are open to people of all genders, nationalities, and identities. This proactive openness was manifest in every aspect of this year’s microgravity flight. 

While incubated in the Media Lab, the Space Exploration Initiative now supports research across MIT. Paula do Vale Pereira, a grad student in MIT's Department of Aeronautics and Astronautics (AeroAsto), was on board to test out automated actuators for CubeSats. Tim McGrath and Jeremy Strong, also from AeroAstro, built an erg machine specially designed for exercise in microgravity. Chris Carr and Maria Zuber, of the Department of Earth, Atmospheric and Planetary Sciences, flew to test out the latest iteration of their Electronic Life-detection Instrument (ELI) research.

Research specialist Maggie Coblentz is pursuing her fascination with food in space — including the world’s first molecular gastronomy experiment in microgravity. She also custom-made an astronaut’s helmet specially designed to accommodate a multi-course tasting menu, allowing her to experiment with different textures and techniques to make both food and eating more enjoyable on long space flights. 

“The function of food is not simply to provide nourishment — it’s a key creature comfort in spaceflight and will play an even more significant role on long-duration space travel and future life in space habitats. I hope to uncover new food cultures and food preparation techniques by evoking the imagination and sense of play in space, Willy Wonka style,” says Coblentz.

With Sensory Synchrony, a project supported by NASA's Translational Research Institute for Space Health, Abhi Jain and fellow researchers in the Media Lab's Fluid Interfaces group investigated vestibular neuromodulation techniques for mitigating the effects of motion sickness caused by the sensory mismatch in microgravity. The team will iterate on the data from this flight to consider possibilities for novel experiences using augmented and virtual reality in microgravity environments.

The Space Enabled research group is testing how paraffin wax behaves as a liquid in microgravity, exploring it as an affordable, accessible alternative satellite fuel. Their microgravity experiment, run by Juliet Wanyiri, aimed to determine the speed threshold, and corresponding voltage, needed for the wax to form into a shape called an annulus, which is one of the preferred geometric shapes to store satellite fuel. “This will help us understand what design might be appropriate to use wax as a satellite fuel for an on-orbit mission in the future,” explains Wanyiri.

Xin Liu flew for the second time this year, with a new project that continues her explorations into the relationship between couture, movement, and self-expression when an artist is released from the constraints of gravity. This year’s project, Mollastica, is a mollusk-inspired costume designed to swell and float in microgravity. Liu also motion-captured a body performance to be rendered later for a “deep-sea-to-deep-space” video work.

The human experience

The extraordinary range of fields, goals, projects, and people represented on this year’s microgravity flight speaks to the unique role the Space Exploration Initiative is already starting to play in the future of space. 

For designer and researcher Alexis Hope, the flight offered the opportunity to discover how weightlessness affects the creative process — how it changes not only the art, but also the artist. Her project, Space/Craft, was an experiment in zero-g sculpture: exploring the artistic processes and possibilities enabled by microgravity by using a hot glue gun to "draw in 3D."

Like all of the researchers aboard the flight, Hope found the experience both challenging and inspiring. Her key takeaway, she says, is excitement for all the unexplored possibilities of art, crafting, and creativity in space.

“Humans always find a way to express themselves creatively, and I expect no different in a zero-gravity environment,” she says. “I’m excited for new materials that will behave in interesting ways in a zero-gravity environment, and curious about how those new materials might inspire future artists to create novel structures, forms, and physical expressions.”

Ekblaw herself spent the flight testing out the latest iteration of TESSERAE, her self-assembling space architecture prototype. The research has matured extensively over the last year and a half, including a recent suborbital test flight with Blue Origin and an upcoming International Space Station mission to take place in early 2020. 

All of the research projects from this year’s flight — as well as some early results, the projects from the Blue Origin flight, and the early prototypes for the ISS mission — were on display at a recent SEI open house at the Media Lab. 

For Ekblaw, the great challenge and the great opportunity in these recurring research flights is helping researchers to keep their projects and goals realistic in the moment, while keeping SEI’s gaze firmly fixed on the future. 

“While parabolic flights are already a remarkable experience, this year was particularly meaningful for us. We had the immense privilege of finalizing our pre-flight testing over the exact days when Neil Armstrong, Buzz Aldrin, and Mike Collins were in microgravity on their way to the moon,” she says. “This 50th anniversary of Apollo 11 reminds us that the next 50 years of interplanetary civilization beckons. We are all now part of this — designing, building, and testing artifacts for our human, lived experience of space.”



de MIT News https://ift.tt/37INX23

Clara Piloto wins Hipatia Award for expanding Spanish-language programs

The director of global programs at MIT Professional Education is among the recipients of the inaugural Hipatia Women in Science Award, a new distinction launched this year by Spain’s El Economista newspaper to promote the role of women in science. Clara Piloto, through her work at MIT Professional Education, won in the category of “Business and Science” for increasing female enrollment in MIT Professional Education’s Spanish-language Digital Plus Programs aimed at professionals in Spanish-speaking economies.

“This is a remarkable accomplishment, and a testament to the commitment MIT Professional Education and MIT have to supporting inclusion and diversity,” says Bhaskar Pant, executive director at MIT Professional Education. “Clara and her digital blended programs team worked in partnership with a Spanish platform partner and developed innovative programs in Spanish that have effectively reduced the gender gap by eliminating many of the traditional barriers to professional education programs, such as cost, geography, and language. As a result, more learners — in particular, women in Latin America — have been empowered with MIT knowledge and training to help succeed in the 21st century.”  

According to the U.S. National Science Foundation, women today make up less than 25 percent of the STEM workforce in the United States. But the gap is even wider for women in Latin America. Statistics show only 2 percent of Latinas held science and engineering positions in 2015.

“Gender and other disparities in STEM are depriving the global workforce of talented minds that could be creating the next breakthrough technology,” says Piloto. “Expanding our professional education offerings to include courses taught in Spanish with global reach will clear a path to professional growth and training opportunities for those not served by us previously.”

MIT Professional Education expanded its offerings to include blended courses taught fully in Spanish in the fall of 2018. The Digital Plus Programs team collaborated with international education technology company, Global Alumni, to integrate MIT content with cutting-edge education technologies, and collaborative teaching methods aimed at promoting maximum interaction and engagement.

When the program first rolled out last October, Piloto says she noticed only 15 percent of enrollees in the “Leadership in Innovation” course were female. In keeping with a key strategic objective of MIT Professional Education, she and her team decided to launch an initiative to promote greater gender diversity and improve access for women across Latin America and Spain.

Over the past 12 months, female participation in Digital Plus Program courses has increased steadily and significantly. Women now make up a total of 32 percent of all participants in the various programs being delivered. As for that “Leadership in Innovation” course — this year, almost 40 percent of enrollees are women, up from a mere 15 percent.

“For many people around the world, MIT seems unattainable,” says Piloto. “Our professional online and blended programs make MIT content accessible and practical for all. It’s rewarding to know our work will have a lasting, positive impact on society.”

Piloto, a Cuban-born American, in conjunction with MIT Professional Education, received the “Hipatia Award” for these accomplishments at a ceremony held in Madrid on Oct. 29. Piloto was presented with a steel figure representing the abstract figure of women standing, an original creation by the Spanish sculptor Gonzalo De Salas.

MIT Professional Education will continue to develop new Spanish course offerings and has plans to launch a new Professional Certificate of Digital Transformation in early 2020. Eventually, Digital Plus Programs expects to expand even further to include courses in other languages, such as Portuguese and Chinese.

“We are very proud of the work of Clara and her team at MIT Professional Education,” says Pant. “It is their commitment that has created this opportunity for Spanish-speaking women professionals. We hope this success will inspire even more inclusion and diversity, and bring MIT knowledge to more people toward helping solve the world’s great challenges.”



de MIT News https://ift.tt/2XRcnBT

3 Questions: Dan Huttenlocher on the formation of the MIT Schwarzman College of Computing

Since beginning his position in August, Dean Dan Huttenlocher has been working on developing the organizational structure of the new MIT Stephen A. Schwarzman College of Computing. He shares an update on the process of building the college and offers a glimpse into the plans for the new college headquarters. 

Q: Can you give us a status update on the college?

A: We have been concentrating our efforts on developing an organizational plan for the college, drawing on last spring’s College of Computing Task Force Working Group reports, and discussions with the leadership of all of the schools and departments, the Faculty Policy Committee, and a number of other groups. The process has been ongoing and iterative, with the development of an approximately 20-page plan that has undergone substantial changes in response to feedback on previous versions.

The latest draft of the plan was presented at the Institute Faculty meeting last Wednesday. It was sent to the entire faculty about three weeks ago and shared with student leadership as well. We expect to share it with the entire MIT community as soon as additional input from the faculty is reflected in the draft, and then to have the initial structure of the college in place by January.

There will undoubtedly continue to be revisions to the organizational plan as we learn more, but I’m really excited to be moving forward with the implementation, some of which has already begun, such as academic implementation work lead by Asu Ozdaglar and the initial startup of Social and Ethical Responsibilities of Computing led by David Kaiser and Julie Shah. Our work is just beginning, and in particular, new curricula, classes, and programs will be developed over time by academic units in the college, in partnership with others across MIT.

I’m thankful to the MIT community for the tremendous amount of time and effort they have put into the initial planning of the MIT Schwarzman College of Computing.

Q: Last year MIT announced the location for construction of the college’s new headquarters, near the intersection of Vassar and Main streets. What are the plans for the new building, and when is construction expected to be complete?

A: The building’s central location will serve as an interdisciplinary hub. The new building will enable the growth of the faculty and bring together those from numerous departments, centers, and labs at MIT that integrate computing into their work, and it will provide convening spaces for classes, seminars, conferences, and interdisciplinary computing projects, in addition to much needed open areas for students across disciplines to meet, mingle, work, and collaborate.

After an in-depth search and selection process, we have chosen Skidmore, Owings & Merrill (SOM) to design the new building. SOM is a firm whose practice spans the fields of architecture, engineering, interior design, and urban planning. They have worked on thousands of projects around the world and have designed some of the most technically and environmentally advanced buildings, among them The New School in New York. 

We are currently early in the design with SOM, a process that began in October. Completion of the new college headquarters is slated for 2023.

Q: As the college begins to take shape, what has the reaction been so far? 

A: There has been widespread recognition of the importance of the MIT Schwarzman College of Computing and the changes that we are undertaking. Our colleagues at other top institutions are interested in what we are doing and how we are doing it, and some are already beginning to consider how they might make relevant changes at their university. No other academic institution is taking on the scale and scope of change that we are pursuing at MIT; reorganizing academic programs that involve many of the faculty and most of the students to position them for the computing age; changing how we develop what we teach in computing, changing how many of our research activities are organized to bring other fields together with computing and artificial intelligence, notably the social sciences, humanities, design, and the arts; and attending to the social and ethical responsibilities in both teaching and research.



de MIT News https://ift.tt/33oOGSE

Producing better guides for medical-image analysis

MIT researchers have devised a method that accelerates the process for creating and customizing templates used in medical-image analysis, to guide disease diagnosis.  

One use of medical image analysis is to crunch datasets of patients’ medical images and capture structural relationships that may indicate the progression of diseases. In many cases, analysis requires use of a common image template, called an “atlas,” that’s an average representation of a given patient population. Atlases serve as a reference for comparison, for example to identify clinically significant changes in brain structures over time.

Building a template is a time-consuming, laborious process, often taking days or weeks to generate, especially when using 3D brain scans. To save time, researchers often download publicly available atlases previously generated by research groups. But those don’t fully capture the diversity of individual datasets or specific subpopulations, such as those with new diseases or from young children. Ultimately, the atlas can’t be smoothly mapped onto outlier images, producing poor results.

In a paper being presented at the Conference on Neural Information Processing Systems in December, the researchers describe an automated machine-learning model that generates “conditional” atlases based on specific patient attributes, such as age, sex, and disease. By leveraging shared information from across an entire dataset, the model can also synthesize atlases from patient subpopulations that may be completely missing in the dataset.

“The world needs more atlases,” says first author Adrian Dalca, a former postdoc in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and now a faculty member in radiology at Harvard Medical School and Massachusetts General Hospital. “Atlases are central to many medical image analyses. This method can build a lot more of them and build conditional ones as well.”

Joining Dalca on the paper are Marianne Rakic, a visiting researcher in CSAIL; John Guttag, the Dugald C. Jackson Professor of Computer Science and Electrical Engineering and head of CSAIL’s Data Driven Inference Group; and Mert R. Sabuncu of Cornell University.

Simultaneous alignment and atlases

Traditional atlas-building methods run lengthy, iterative optimization processes on all images in a dataset. They align, say, all 3D brain scans to an initial (often blurry) atlas, and compute a new average image from the aligned scans. They repeat this iterative process for all images. This computes a final atlas that minimizes the extent to which all scans in the dataset must deform to match the atlas. Doing this process for patient subpopulations can be complex and imprecise if there isn’t enough data available.

Mapping an atlas to a new scan generates a “deformation field,” which characterizes the differences between the two images. This captures structural variations, which can then be further analyzed. In brain scans, for instance, structural variations can be due to tissue degeneration at different stages of a disease.

In previous work, Dalca and other researchers developed a neural network to rapidly align these images. In part, that helped speed up the traditional atlas-building process. “We said, ‘Why can’t we build conditional atlases while learning to align images at the same time?’” Dalca says.

To do so, the researchers combined two neural networks: One network automatically learns an atlas at each iteration, and another — adapted from the previous research — simultaneously aligns that atlas to images in a dataset.

In training, the joint network is fed a random image from a dataset encoded with desired patient attributes. From that, it estimates an attribute-conditional atlas. The second network aligns the estimated atlas with the input image, and generates a deformation field.

The deformation field generated for each image pair is used to train a “loss function,” a component of machine-learning models that helps minimize deviations from a given value. In this case, the function specifically learns to minimize distances between the learned atlas and each image. The network continuously refines the atlas to smoothly align to any given image across the dataset.

On-demand atlases

The end result is a function that’s learned how specific attributes, such as age, correlate to structural variations across all images in a dataset. By plugging new patient attributes into the function, it leverages all learned information across the dataset to synthesize an on-demand atlas — even if that attribute data is missing or scarce in the dataset.

Say someone wants a brain scan atlas for a 45-year-old female patient from a dataset with information from patients aged 30 to 90, but with little data for women aged 40 to 50. The function will analyze patterns of how the brain changes between the ages of 30 to 90 and incorporate what little data exists for that age and sex. Then, it will produce the most representative atlas for females of the desired age. In their paper, the researchers verified the function by generating conditional templates for various age groups from 15 to 90.

The researchers hope clinicians can use the model to build their own atlases quickly from their own, potentially small datasets. Dalca is now collaborating with researchers at Massachusetts General Hospital, for instance, to harness a dataset of pediatric brain scans to generate conditional atlases for younger children, which are hard to come by.

A big dream is to build one function that can generate conditional atlases for any subpopulation, spanning birth to 90 years old. Researchers could log into a webpage, input an age, sex, diseases, and other parameters, and get an on-demand conditional atlas. “That would be wonderful, because everyone can refer to this one function as a single universal atlas reference,” Dalca says.

Another potential application beyond medical imaging is athletic training. Someone could train the function to generate an atlas for, say, a tennis player’s serve motion. The player could then compare new serves against the atlas to see exactly where they kept proper form or where things went wrong.

“If you watch sports, it’s usually commenters saying they noticed if someone’s form was off from one time compared to another,” Dalca says. “But you can imagine that it could be much more quantitative than that.”



de MIT News https://ift.tt/35CYUk4

Six MIT faculty elected 2019 AAAS Fellows

Six MIT faculty members have been elected as fellows of the American Association for the Advancement of Science (AAAS).

The new fellows are among a group of 443 AAAS members elected by their peers in recognition of their scientifically or socially distinguished efforts to advance science. This year’s fellows will be honored at a ceremony on Feb. 15, at the AAAS Annual Meeting in Seattle.

Arthur B. Baggeroer is a professor of mechanical, ocean and electrical engineering, the Ford Professor of Engineering, Emeritus, and an international authority on underwater acoustics. Throughout his career he made significant advances to geophysical signal processing and sonar technology, in addition to serving as a long-time intellectual resource to the U.S. Navy.

Suzanne Flynn is a professor of linguistics and language acquisition, and a leading researcher on the acquisition of various aspects of syntax by children and adults in bilingual, second- and third-language contexts. She also works on the neural representation of the multilingual brain and issues related to language impairment, autism, and aging. Flynn is currently editor-in-chief and a co-founding editor of Syntax: A Journal of Theoretical, Experimental and Interdisciplinary Research.  

Wesley L. Harris is the Charles Stark Draper Professor of Aeronautics and Astronautics and has served as MIT associate provost and head of the Department of Aeronautics and Astronautics. His academic research program includes unsteady aerodynamics, aeroacoustics, rarefied gas dynamics, sustainment of capital assets, and chaos in sickle cell disease. Prior to coming to MIT, he was a NASA associate administrator, responsible for all programs, facilities, and personnel in aeronautics.

Eric Klopfer is a professor and head of the Comparative Media Studies/Writing program and the director of the Scheller Teacher Education Program and The Education Arcade at MIT. His interests range from the design and development of new technologies for learning to professional development and implementation in schools. Much of Klopfer’s research has focused on computer games and simulations for building understanding of science, technology, engineering, and mathematics.

Douglas Lauffenburger, is the Ford Professor of Biological Engineering, Chemical Engineering, and Biology, and head of the Department of Biological Engineering. He and his research group investigate the interface of bioengineering, quantitative cell biology, and systems biology. The lab’s main focus has been on fundamental aspects of cell dysregulation, complemented by translational efforts in identifying and testing new therapeutic ideas.

John J. Leonard is the Samuel C. Collins Professor of Mechanical and Ocean Engineering and a leading expert in navigation and mapping for autonomous mobile robots. His research focuses on long-term visual simultaneous localization and mapping in dynamic environments. In addition to underwater vehicles, Leonard has applied his pursuit of persistent autonomy to the development of self-driving cars.

This year’s fellows will be formally announced in the AAAS News and Notes section of Science on Nov. 28.



de MIT News https://ift.tt/34nYv4K

lunes, 25 de noviembre de 2019

Coated seeds may enable agriculture on marginal lands

Providing seeds with a protective coating that also supplies essential nutrients to the germinating plant could make it possible to grow crops in otherwise unproductive soils, according to new research at MIT.

A team of engineers has coated seeds with silk that has been treated with a kind of bacteria that naturally produce a nitrogen fertilizer, to help the germinating plants develop. Tests have shown that these seeds can grow successfully in soils that are too salty to allow untreated seeds to develop normally. The researchers hope this process, which can be applied inexpensively and without the need for specialized equipment, could open up areas of land to farming that are now considered unsuitable for agriculture.

The findings are being published this week in the journal PNAS, in a paper by graduate students Augustine Zvinavashe ’16 and Hui Sun, postdoc Eugen Lim, and professor of civil and environmental engineering Benedetto Marelli.

The work grew out of Marelli’s previous research on using silk coatings as a way to extend the shelf life of seeds used as food crops. “When I was doing some research on that, I stumbled on biofertilizers that can be used to increase the amount of nutrients in the soil,” he says. These fertilizers use microbes that live symbiotically with certain plants and convert nitrogen from the air into a form that can be readily taken up by the plants.

Not only does this provide a natural fertilizer to the plant crops, but it avoids problems associated with other fertilizing approaches, he says: “One of the big problems with nitrogen fertilizers is they have a big environmental impact, because they are very energetically demanding to produce.” These artificial fertilizers may also have a negative impact on soil quality, according to Marelli.

Although these nitrogen-fixing bacteria occur naturally in soils around the world, with different local varieties found in different regions, they are very hard to preserve outside of their natural soil environment. But silk can preserve biological material, so Marelli and his team decided to try it out on these nitrogen-fixing bacteria, known as rhizobacteria.

“We came up with the idea to use them in our seed coating, and once the seed was in the soil, they would resuscitate,” he says. Preliminary tests did not turn out well, however; the bacteria weren’t preserved as well as expected.

That’s when Zvinavashe came up with the idea of adding a particular nutrient to the mix, a kind of sugar known as trehalose, which some organisms use to survive under low-water conditions. The silk, bacteria, and trehalose were all suspended in water, and the researchers simply soaked the seeds in the solution for a few seconds to produce an even coating. Then the seeds were tested at both MIT and a research facility operated by the Mohammed VI Polytechnic University in Ben Guerir, Morocco. “It showed the technique works very well,” Zvinavashe says.

The resulting plants, helped by ongoing fertilizer production by the bacteria, developed in better health than those from untreated seeds and grew successfully in soil from fields that are presently not productive for agriculture, Marelli says.

In practice, such coatings could be applied to the seeds by either dipping or spray coating, the researchers say. Either process can be done at ordinary ambient temperature and pressure. “The process is fast, easy, and it might be scalable” to allow for larger farms and unskilled growers to make use of it, Zvinavashe says. “The seeds can be simply dip-coated for a few seconds,” producing a coating that is just a few micrometers thick.

The ordinary silk they use “is water soluble, so as soon as it’s exposed to the soil, the bacteria are released,” Marelli says. But the coating nevertheless provides enough protection and nutrients to allow the seeds to germinate in soil with a salinity level that would ordinarily prevent their normal growth. “We do see plants that grow in soil where otherwise nothing grows,” he says.

These rhizobacteria normally provide fertilizer to legume crops such as common beans and chickpeas, and those have been the focus of the research so far, but it may be possible to adapt them to work with other kinds of crops as well, and that is part of the team’s ongoing research. “There is a big push to extend the use of rhizobacteria to nonlegume crops,” he says. One way to accomplish that might be to modify the DNA of the bacteria, plants, or both, he says, but that may not be necessary.

“Our approach is almost agnostic to the kind of plant and bacteria,” he says, and it may be feasible “to stabilize, encapsulate and deliver [the bacteria] to the soil, so it becomes more benign for germination” of other kinds of plants as well.

Even if limited to legume crops, the method could still make a significant difference to regions with large areas of saline soil. “Based on the excitement we saw with our collaboration in Morocco,” Marelli says, “this could be very impactful.”

As a next step, the researchers are working on developing new coatings that could not only protect seeds from saline soil, but also make them more resistant to drought, using coatings that absorb water from the soil. Meanwhile, next year they will begin test plantings out in open experimental fields in Morocco; their previous plantings have been done indoors under more controlled conditions.

The research was partly supported by the Université Mohammed VI Polytechnique-MIT Research Program, the Office of Naval Research, and the Office of the Dean for Graduate Fellowship and Research.



de MIT News https://ift.tt/2XKYDsx

MIT’s new sustainability garden creates a buzz

Tucked beside Walker Memorial, just across from the Charles River, is a new space for the MIT community, native plants, and some important supporters — pollinators. The Hive Garden, a first-of-its-kind garden at MIT, recently opened on Saxon Lawn, creating a small and unique outdoor community space on campus.

Designed as a sustainability garden that will be in part maintained by students, the Hive Garden hosts nearly 40 unique varieties of plants to attract and support pollinators like bees, birds, butterflies, and moths — essential contributors to sustainable ecosystems and food systems. The garden also serves as a test bed for co-designing outdoor spaces to connect to, and learn from, nature in an urban setting.

Student-led sustainable idea

The idea behind the Hive originated in 2017, when members of the MIT Undergraduate Association Committee on Sustainability — known as UA Sustain — sought to leverage their collective power across campus to launch a large-scale project, says Soma Mitra-Behura '19, then co-chair of UA Sustain. “I decided to pitch the idea of a large-scale project to our whole committee. Out of this discussion came many ideas, including an industrial composter and solar panels on campus rooftops,” she explains.

Polling of the undergraduate population led to the winning idea of a collaboratively designed and maintained garden to both educate and engage students around sustainability efforts. As the group explored pathways for making their idea a reality, the garden became a cross-campus collaboration, and they began working closely with both the Office of Sustainability (MITOS) and MIT Grounds Services.

A unique collaboration

“Here [at MIT], you realize pretty quickly that you aren't going to make it if you try to figure everything out on your own,” says UA Sustain member Sam Nitz. At the outset, Environmental Solutions Initiatives Director Professor John E. Fernández advised UA Sustain on working with MIT leadership to pitch the idea and secure space for the garden.

“The Saxon Lawn was created last year to adapt to changes in this part of campus and provide more open space for the whole MIT community. We were supportive of the students’ idea of transforming part of the Saxon Lawn — as a newly created green space — into a test bed that brings sustainability to life for people making their way across campus and along Gray Way,” explains Associate Provost Krystyn Van Vliet. Van Vliet co-chairs the Committee for Space Renovation and Planning with Tony Sharon, and this team coordinated this plan and engagement of MIT Ground Services to enable the project. “The creative design process of students and staff, and thoughtful communication of how the garden is used and maintained, are critical to understanding how to foster unique ideas like this in the future.”

Once the space was secured, staff from MITOS began working closely with the students to help facilitate the design and execution process. Julie Newman, director of sustainability, explains that, “Bringing students together with operational staff to co-develop solutions is a central aspect of the methodology of the office. The vision for a community garden by the students warranted a multi-stakeholder partnership with representative students, staff, faculty, and administrators to design, implement, and now maintain.”

Students worked together to mock up visually exciting, community-centered designs for the garden. “The students’ early designs featured these intricate patterns of hexagonal planters that were like building blocks that you could configure in different ways within the space — some might grow plants, capture water, or generate solar energy,” explains Susy Jones, MITOS senior project manager who worked closely with the students.

To ensure the designs were suitable for the space and project budget, MITOS connected the students with MIT Ground Services — the team that keeps MIT’s outdoor space “accessible and beautiful.” Led by Norman Magnuson, manager of Ground Services, and in collaboration with landscape professionals, a design of several hexagonal planters spread diagonally across Saxon Lawn emerged.  “I’ve worked with students on a few projects in the past, and it’s great to be around them — they have so much enthusiasm,” says Magnuson of the partnership.

The wooden planters used for the garden were made with sustainably-sourced wood and house dozens of native plants, offering diversity and support for various pollinators. In addition to a matching hexagonal picnic table for gathering, the space is outfitted with wooden chairs hand-crafted by architecture student and MITOS student design fellow Effie Jia.  

The Hive Garden, which was completed in September, will be cared for both by students and Grounds Services, ensuring the garden and gathering space remains accessible to all — community members and pollinators alike. As the garden enters into a dormant period before blooming in the spring, the hope is that the collaborative process behind it can be replicated. “Our hope is that the Hive and the collaborative process behind it will serves as a model for future urban gardens for both MIT and beyond,” Newman says.



de MIT News https://ift.tt/2rljAyf

Zach Lieberman joins MIT Media Lab

Artist and educator Zach Lieberman has been appointed as an adjunct associate professor of media arts and sciences at the Media Lab. As of the fall 2019 semester, he is teaching courses and working on projects at the lab under the aegis of his newly founded research group, Future Sketches.

A new-media artist with a background in fine arts, Lieberman creates animations, public art, and installations that explore the relationship between computation, art, and movement. He holds degrees from Hunter College and Parsons School of Design, has been artist-in-residence at Ars Electronica Futurelab, Eyebeam, Dance Theater Workshop, and the Hangar Center for the Arts in Barcelona, and his work has been exhibited around the world. He is one of the co-founders of openFrameworks, a C++ library for creative coding.

Lieberman is particularly drawn to coding as a mode of expression, comparing it to poetry in its dichotomy between precision and infinite variation. “What I like about poetry is that it’s an art form where you’re using really precise words in a certain order to describe what it means to be human, what it means to be alive. It’s an art form that’s about precision with language,” says Lieberman. “And coding is really about precision, too, with an artificial language. You’re using language in a very specific order to make something emerge.”

His interest in code as a creative medium led Lieberman to found the School for Poetic Computation in 2013, an alternative school for art and technology in New York, where he continues to teach and advise. Lieberman also has a longstanding affinity for, and affiliation with, the Media Lab, citing John Maeda’s book “Design By Numbers” as a crucial influence. He worked with Golan Levin, a Media Lab alum from Maeda’s Aesthetics and Computation group, on a series of audiovisual projects under the moniker Tmema.

Lieberman also points to Media Lab founding faculty member Muriel Cooper as an inspiration and exemplar; his research group’s name, Future Sketches, is an homage to her. “The name comes from Muriel Cooper, whose work means a lot to me. She has this letter that she wrote for Plan Magazine in 1980, with a 12-page spread of all the work being done in her Visual Language Workshop. She finished that letter with, ‘This stands as a sketch for the future.’ My work is dedicated to exploring this tradition.”

“We’re really thrilled to have Zach join us at the lab,” says Tod Machover, Muriel R. Cooper Professor of Music and Media, who directs the Opera of the Future research group and is academic head of the Program in Media Arts and Sciences. “In addition to carrying on the legacy of Muriel Cooper that’s so intrinsic to the lab in a playful and thoughtful way, Zach is also committed to mentorship and fostering creativity. He has already become a kind of artistic Pied Piper to many of our students, in the loveliest, most productive way. I believe that Zach’s work and pedagogy will have a profound impact on the future fabric of the Media Lab.



de MIT News https://ift.tt/34lG7t8

Smart systems for semiconductor manufacturing

Integrating smart systems into manufacturing offers the potential to transform many industries. Lam Research, a founding member of the MIT.nano Consortium and a longtime member of the Microsystems Technology Lab (MTL) Microsystems Industrial Group, explored the challenges and opportunities smart systems bring to the semiconductor industry at its annual technical symposium, held at MIT in October.

Co-hosted by MIT.nano and the MTL, the two-day event brought together Lam’s global technical staff, academic collaborators, and industry leaders with MIT faculty, students, and researchers to focus on software and hardware needed for smart manufacturing and process controls.

Tim Archer, president and CEO of Lam Research, kicked off the first day, noting that “the semiconductor industry is more impactful to people's lives than ever before." 

“We stand at an innovation inflection point where smart systems will transform the way we work and live,” says Rick Gottscho, executive vice president and chief technology officer of Lam Research. “The event inspires us to make the impossible possible, through learning about exciting research opportunities that drive innovation, fostering collaboration between industry and academia to discover best-in-class solutions together, and engaging researchers and students in our industry. For all of us to realize the opportunities of smart systems, we have to embrace challenges, disrupt conventions, and collaborate.”

The symposium featured speakers from MIT and Lam Research, as well as the University of California at Berkeley, Tsinghua University in Beijing, Stanford University, Winbond Electronics Corporation, Harting Technology Group, and GlobalFoundries, among others. Professors, corporate leaders, and MIT students came together over discussions of machine learning, micro- and nanofabrication, big data — and how it all relates to the semiconductor industry.

“The most effective way to deliver innovative and lasting solutions is to combine our skills with others, working here on the MIT campus and beyond,” says Vladimir Bulović, faculty director of MIT.nano and the Fariborz Maseeh Chair in Emerging Technology. “The strength of this event was not only the fantastic mix of expertise and perspectives convened by Lam and MIT, but also the variety of opportunities it created for networking and connection.”

Tung-Yi Chan, president of Winbond Electronics, a specialty memory integrated circuit company, set the stage on day one with his opening keynote, “Be a ‘Hidden Champion’ in the Fast-Changing Semiconductor Industry.” The second day’s keynote, given by Ron Sampson, senior vice president and general manager of US Fab Operations at GlobalFoundries, continued the momentum, addressing the concept that smart manufacturing is key to the future for semiconductors.

“We all marvel at the seemingly superhuman capabilities that AI systems have recently demonstrated in areas of image classification, natural language processing, and autonomous navigation,” says Jesús del Alamo, professor of electrical engineering and computer science and former faculty director of MTL. “The symposium discussed the potential for smart tools to transform semiconductor manufacturing. This is a terrific topic for exploration in collaboration between semiconductor equipment makers and universities.”

A series of plenary talks took place over the course of the symposium:

  • “Equipment Intelligence: Fact or Fiction” – Rick Gottscho, executive vice president and chief technology officer at Lam Research
  • “Machine Learning for Manufacturing: Opportunities and Challenges” – Duane Boning, the Clarence J. LeBel Professor in Electrical Engineering at MIT
  • “Learning-based Diagnosis and Control for Nonequilibrium Plasmas” – Ali Mesbah, assistant professor of chemical and biomolecular engineering at the University of California at Berkeley
  • “Reconfigurable Computing and AI Chips” – Shouyi Yin, professor and vice director of the Institute of Microelectronics at Tsinghua University
  • “Moore’s Law Meets Industry 4.0” – Costas Spanos, professor at UC Berkeley
  • “Monitoring Microfabrication Equipment and Processes Enabled by Machine Learning and Non-contacting Utility Voltage and Current Measurements” – Jeffrey H. Lang, the Vitesse Professor of Electrical Engineering at MIT, and Vivek R. Dave, director of technology at Harting, Inc. of North America
  • “Big and Streaming Data in the Smart Factory” – Brian Anthony, associate director of MIT.nano and principal research scientist in the Institute of Medical Engineering and Sciences (IMES) and the Department of Mechanical Engineering at MIT

Both days also included panel discussions. The first featured leaders in global development of smarter semiconductors: Tim Archer of Lam Research; Anantha Chandrakasan of MIT; Tung-Yi Chan of Winbond; Ron Sampson of GlobalFoundries; and Shaojun Wei of Tsinghua University. The second panel brought together faculty to talk about “graduating to smart systems”: Anette “Peko” Hosoi of MIT; Krishna Saraswat of Stanford University; Huaqiang Wu of Tsinghua University; and Costas Spanos of UC Berkeley.

Opportunities specifically for startups and students to interact with industry and academic leaders capped off each day of the symposium. Eleven companies competed in a startup pitch session at the end of the first day, nine of which are associated with the MIT Startup Exchange — a program that promotes collaboration between MIT-connected startups and industry. Secure AI Labs, whose work focuses on easier data sharing while preserving data privacy, was deemed the winner by a panel of six venture capitalists. The startup received a convertible note investment provided by Lam Capital. HyperLight, a silicon photonics startup, and Southie Autonomy, a robotics startup, received honorable mentions, coming in second and third place, respectively.

Day two concluded with a student poster session. Graduate students from MIT and Tsinghua University delivered 90-second pitches about their cutting-edge research in the areas of materials and devices, manufacturing and processing, and machine learning and modeling. The winner of the lightning pitch session was MIT’s Christian Lau for his work on a modern microprocessor built from complementary carbon nanotube transistors.

The Lam Research Technical Symposium takes place annually and rotates locations between academic collaborators, MIT, Stanford University, Tsinghua University, UC Berkeley, and Lam’s headquarters in Fremont, California. The 2020 symposium will be held at UC Berkeley next fall.



de MIT News https://ift.tt/2DgoejE

Interdisciplinary team takes top prize in Mars colony design competition

Every 75 years, Halley’s Comet makes a triumphant return to the inner solar system, becoming visible to the naked eye from the Earth’s surface as it streaks across the night sky. In 1986, brothers George and Alexandros Lordos, who helped found the astronomy club at their high school in Cyprus, decided they were not going to miss this once-in-a-lifetime opportunity despite the cloudy weather.

“Together with friends, we borrowed camping supplies from the hiking club and hiked up familiar terrain on Troodos Mountain to a cloudless spot that was 5,000 feet above sea level, miles away from city lights” says George Lordos, MBA ’00, SM ’18. “When we unzipped our tent at 3 o’clock in the morning, Halley’s comet was right in front of us, in all its glory. It was like seeing a ghost ship floating on a sea of stars.”

Recently, the brothers again combined their shared passion with their professional expertise to team up and develop Star City, a concept for a human city on Mars. Their design won first place at the Mars Colony Prize Design contest, which was hosted by the Mars Society and judged by a panel that included experts from NASA and SpaceX.

Today, Lordos is a PhD candidate in the Engineering Systems Laboratory at MIT’s Department of Aeronautics and Astronautics and the head teaching assistant at MIT’s System Design and Management Program, researching sustainable human space settlement architectures with professors Olivier de Weck and Jeffrey Hoffman. His brother, Alexandros Lordos, is currently the director of the Center for the Study of Life Skills and Resilience at the Department of Psychology at the University of Cyprus, and head of learning and innovation at the Center for Sustainable Peace and Democratic Development, researching the development of integrated systems to foster mental health and social cohesion in countries facing conflict-related adversities.

“In addition to addressing the engineering requirements to put humans on Mars, the overall philosophy of our approach was to provide the residents with a diverse array of capabilities, rather than ready-made solutions, relying on the human capacity to be resourceful and resilient in addressing the many unknown challenges that will arise,” says Lordos. “This ensures not only their survival, but also that their well-being, agency, and capacity to grow will be duly considered so they may thrive there as well.”

The goal of the competition was to establish a successful colony on Mars for 1,000 residents. One hundred entrants from around the world submitted proposals, which were eventually narrowed to 10 finalists who presented their proposals at the 22nd Annual Mars Society Convention in October. The criteria for the judges’ consideration included technical merit, economic viability, social and political organization, and aesthetics.

Using abundant energy supplies and heavy equipment, Star City’s residents will first focus on carving out habitats by tunneling inside a crater rim to create networks of living and work spaces. By working with the natural topography of Mars, the residents will be able to develop large habitable spaces that will be safe from radiation and other dangers. At the same time, the excavated material will be mined for water and useful minerals that can then support local industry and the growth of self-sustaining crops through hydroponics. From there, they would continue to build around the crater rim to create residential and commercial areas that contain shops, restaurants, and libraries, eventually pooling their resources to develop the city’s central hub, which will house Mars University and other shared facilities.

“The idea is to start with five distinct villages that will be constructed around the crater rim, each aiming for a population of 200 residents within a decade of the first landing, and originating from different Earth continents,” says Lordos. “The five villages will interconnect their tunnel networks and focus on continuous growth of their habitats, capabilities, stocks of resources, and quality of life.”

According to Alexandros, the wheel-like physical layout is one of the key mechanisms to build an organic sense of community among Star City residents, which is essential to their well-being as they navigate the challenges of living together on a distant planet. Proximity will enable each village to have access to the other four for material and social support, inspiration, leisure, new ideas, different solutions to common challenges, and socialization. By teaming up to address survival challenges and achieve aspirational goals, they will establish a support network completely unique to Star City so residents can better navigate through times of difficulty.

“Drawing on cumulative insights from the social sciences and our own experience in developing systems to support societies facing extreme adversities, we have identified core aspects of the human condition that will be relevant for socio-economic development on Mars,” says Alexandros. “Specifically, we considered the pivotal role that individual as well as community resilience will be expected to play on Mars, sought to ensure a balance between survival-orientation and self-expression in everyone’s daily life, while making room for Star City residents to develop multi-layered identities as members of their more intimate village communities and, at the same time, as citizens of a vibrant and forward-looking technological civilization.”

In addition to building community by nurturing the well-being of its human residents, Star City will also build a viable economy and political system to ensure that commerce and governance provide stability for its residents. To pay for importing much-needed supplies from Earth in the short term, Star City residents will leverage their local know-how, infrastructure, and heavy equipment to provide construction services to others who may wish to build a city on Mars. In the long term, Star City could establish itself as a central hub for innovation, entrepreneurship, and tourism as humanity travels farther and farther into the reaches of space.  

“Our vision is not to simply send human explorers to Mars in order to set up these scientific outposts where we can perform useful experiments, though that is an important and valuable component,” says Robert Zubrin, president of Pioneer Astronautics and the founder and president of the Mars Society, who organized the contest and served on the panel of judges. “The fundamental question we are asking is if we can expand human civilization into other worlds. Of course, you have to have the correct technical analysis, but there are all of these other human dimensions to make a colony on Mars work, and Star City addressed those in the most successful way.”

The Star City sociotechnical concept and urban plan was created by George and Alexandros Lordos, with architectural support for the creation of design studies, drawings, and renderings by lead architects Nikos Papapanousis and Tatiana Kouppa, and their team members Efi Koutsaftaki, Aliki Noula, and Aris Michailidis of Delta Architects, Athens, Greece.



de MIT News https://ift.tt/2secs73

MIT art installation aims to empower a more discerning public

Videos doctored by artificial intelligence, culturally known as “deepfakes,” are being created and shared by the public at an alarming rate. Using advanced computer graphics and audio processing to realistically emulate speech and mannerisms, deepfakes have the power to distort reality, erode truth, and spread misinformation. In a troubling example, researchers around the world have sounded the alarm that they carry significant potential to influence American voters in the 2020 elections. 

While technology companies race to develop ways to detect and control deepfakes on social media platforms, and lawmakers search for ways to regulate them, a team of artists and computer scientists led by the MIT Center for Advanced Virtuality have designed an art installation to empower and educate the public on how to discern reality from deepfakes on their own.

“Computer-based misinformation is a global challenge,” says Fox Harrell, professor of digital media and of artificial intelligence at MIT and director of the MIT Center for Advanced Virtuality. “We are galvanized to make a broad impact on the literacy of the public, and we are committed to using AI not for misinformation, but for truth. We are pleased to bring onboard people such as our new XR Creative Director Francesca Panetta to help further this mission.”

Panetta is the director of “In Event of Moon Disaster,” along with co-director Halsey Burgund, a fellow in the MIT Open Documentary Lab. She says, “We hope that our work will spark critical awareness among the public. We want them to be alert to what is possible with today’s technology, to explore their own susceptibility, and to be ready to question what they see and hear as we enter a future fraught with challenges over the question of truth.”

With “In Event of Moon Disaster,” which opened Friday at the International Documentary Festival Amsterdam, the team has reimagined the story of the moon landing. Installed in a 1960s-era living room, audiences are invited to sit on vintage furniture surrounded by three screens, including a vintage television set. The screens play an edited array of vintage footage from NASA, taking the audience on a journey from takeoff into space and to the moon. Then, on the center television, Richard Nixon reads a contingency speech written for him by his speech writer, Bill Safire, “in event of moon disaster” which he was to read if the Apollo 11 astronauts had not been able to return to Earth. In this installation, Richard Nixon reads this speech from the Oval Office.

To recreate this moving elegy that never happened, the team used deep learning techniques and the contributions of a voice actor to build the voice of Richard Nixon, producing a synthetic speech working with the Ukranian-based company Respeecher. They also worked with Israeli company Canny AI to use video dialogue replacement techniques to study and replicate the movement of Nixon’s mouth and lips, making it look as though he is reading this very speech from the Oval Office. The resulting video is highly believable, highlighting the possibilities of deepfake technology today.

The researchers chose to create a deepfake of this historical moment for a number of reasons: Space is a widely loved topic, so potentially engaging to a wide audience; the piece is apolitical and less likely to alienate, unlike a lot of misinformation; and, as the 1969 moon landing is an event widely accepted by the general public to have taken place, the deepfake elements will be starkly obvious. 

Rounding out the educational experience, “In Event of Moon Disaster” transparently provides information regarding what is possible with today’s technology, and the goal of increasing public awareness and ability to identify misinformation in the form of deepfakes. This will be in the form of newspapers written especially for the exhibit which detail the making of the installation, how to spot a deepfake, and the most current work being done in algorithmic detection. Audience participants will be encouraged to take this away.

"Our goal was to use the most advanced artificial intelligence techniques available today to create the most believable result possible — and then point to it and say, ‘This is fake; here’s how we did it; and here’s why we did it,’” says Burgund.

While the physical installation opens in November 2019 in Amsterdam, the team is building a web-based version that is expected to go live in spring 2020.



de MIT News https://ift.tt/2QPftVO

sábado, 23 de noviembre de 2019

Five MIT students named 2020 Rhodes Scholars

Ali Daher, Claire Halloran, Francisca Vasconcelos, Billy Anderson Woltz, and Megan Yamoah have been selected for the 2020 cohort of the prestigious Rhodes Scholarship program. They will begin fully funded postgraduate studies at Oxford University in the U.K. next fall. Each year, Rhodes awards 32 scholarships to U.S. citizens plus additional scholarships reserved for non-U.S. citizens.  

Halloran, Vasconcelos, Woltz, and Yamoah will join the 2020 American Rhodes Scholar class. Daher was awarded the Rhodes Scholarship for Syria, Jordan, Lebanon and Palestine.

The MIT students were supported by MIT’s Office of Distinguished Fellowships and the Presidential Committee on Distinguished Fellowships. “It has been a gift to work with all of our applicants, and we are especially gratified when the Rhodes committee sees in them the same traits that we value so highly — not just academic excellence, but also thoughtfulness, creativity, initiative, and moral character,” says Professor Tamar Schapiro, who co-chairs the committee along with Professor Will Broadhead.

Ali Daher

Ali Daher, from Amman, Jordan, is a senior majoring in mechanical engineering with a concentration in biomedical engineering. At Oxford, he will pursue an advanced degree in research science engineering. Daher’s Rhodes Scholarship was announced Nov. 15

Claire Halloran

Hailing from Wauwatosa, Wisconsin, Claire Halloran is a senior majoring in materials science and engineering with minors in energy studies and public policy. At Oxford, Halloran will pursue an MSc in energy systems and a Master of Public Policy. She aspires to become a policy leader who will advocate for legislature that is both technically sound and appropriate for wider social contexts.

Halloran is dedicated to creating clean-energy technologies, advocating for strong climate policy, and disseminating knowledge about climate change. Her research has focused on solar energy technologies, including a project on solar-to fuel conversion reactors for concentrated solar systems with the Electrochemical Materials Laboratory in the MIT Department of Materials Science and Engineering, and an independent research project on silicon and perovskite photovoltaics. During a spring study abroad semester at Oxford, Halloran worked on high-energy-density battery design with the Faraday Institution SOLBAT Project, and this past summer she interned at Form Energy, a startup focused on creating low-cost, long-lasting batteries.

Halloran has interned with the Environmental Defense Fund and held climate policy fellowships with Our Climate and the Better Future Project. On campus, she founded and directs the MIT Climate Action Team, which works to organize the MIT community in support of policies to mitigate climate change. Halloran also holds an executive position and serves as a peer educator with the MIT Violence Prevention and Response team, facilitating peer conversations about sexual violence and healthy relationships.

Francisca Vasconcelos

Francisca Vasconcelos is from San Diego, California, and will graduate in 2020 with a double major in electrical engineering and computer science and in physics. Vasconcelos aspires to become an academic, leading a cutting-edge research lab to tackle problems in machine learning and physics, specifically in the domain of quantum computing. She hopes to develop the algorithms, derive the physics, and design the hardware that will drive forward the next revolution in computing, while inspiring and educating the next generation of quantum engineers. At Oxford, she will pursue an MSc in mathematics and foundations of computer science, as well as an MSc in statistical science.

Vasconcelos currently conducts research under Professor William Oliver in the Engineering Quantum Systems Group of the Research Lab for Electronics. Her research focuses on extending quantum state tomography for superconducting quantum processors, but she has also worked on a waveguide quantum electrodynamics project and study of radiation induced quasiparticle formation in superconducting qubits. Vasconcelos has done additional research at the MIT Computer Science and Artificial Intelligence Lab NETMIT group, NASA Jet Propulsion Laboratory, MIT Media Lab Camera Culture Group, and Rigetti Computing.

Vasconcelos plays for the MIT women's club soccer team and has held leadership roles in the MIT Society of Women Engineers and MIT IEEE Undergraduate Research Technology Conference committee. Vasconcelos is an instructor for the MIT EECS IAP “Intro to Quantum Computing” course and is leading the development of a high school quantum computing curriculum with the nonprofit organization The Coding School.

Billy Woltz

Growing up on a farm in Logan, Ohio, Billy Woltz had limited options for internet service and STEM education. He arrived at MIT with an interest in physics and modeling complicated systems. He will graduate this spring with a double major in physics and electrical engineering and computer science.

At Oxford, Woltz will pursue a second undergraduate degree in philosophy, politics, and economics to acquire skills for making an impact on both the technical and policy aspects of quantum computing. He plans to eventually earn a PhD in physics, conduct research on quantum technologies, and advise legislative bodies on science and technology.

Woltz is currently a research assistant in the Engineering Quantum Systems Group in the Research Laboratory of Electronics where he is working on a superconducting qubit platform for quantum information processing. In the Department of Physics, Woltz designed an algorithm for automating data collection from CERN’s particle detectors with the Laboratory for Nuclear Science, and tested the effects of environmental fluctuations on microbial communities with the Physics of Living Systems Group. 

Woltz founded a summer camp to teach computer science skills to underserved Appalachian and refugee students in rural and urban Ohio communities. A 2018 NEWMAC Runner of the Year, he is captain of the MIT varsity track and field and cross-country teams, and has achieved five All-New England honors. He writes investigative journalism articles for the MIT newspaper The Tech, and likes to read and play guitar in his spare time.

Megan Yamoah

Megan Yamoah, from Davis, California, is a senior majoring in physics and electrical engineering. The daughter of immigrants from Ghana and Thailand, she seeks to expand on her engineering background to tackle questions involving technology and international development. At Oxford, she will pursue an MPhil in economics to acquire knowledge in development economics and study how innovation can positively impact emerging economies.

A Goldwater Scholar with several first-author publications and a patent to her name, Yamoah has focused on the cutting edge of quantum computing. As a high school student, she conducted research in the Goldhaber-Gordon Laboratory at Stanford University. Since her freshman year at MIT, she has been assisting Professor William Oliver in the Engineering Quantum Systems Group in the Research Laboratory of Electronics. She also did a summer research internship in the Q Circuits Group at the École Normale Supérieure de Lyon. This past summer, Yamoah attended workshops for the MIT Regional Acceleration Program (REAP) where she connected with diverse stakeholders from around the world on developing initiatives for spurring innovation.  

As president of the MIT chapter of the Society of Physics Students, Yamoah worked to develop a physics department statement of values, the first of its kind at MIT. She is an executive board member of Undergraduate Women in Physics and has served multiple roles in the Society of Women Engineers. As a project committee member for MIT Design for America, Yamoah organized workshops for teams creating technology-based solutions for local challenges such as food insecurity.



de MIT News https://ift.tt/2QMJC8e